ebook img

Logic and structure PDF

266 Pages·2013·1.41 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Logic and structure

Universitext Universitext SeriesEditors: SheldonAxler SanFranciscoStateUniversity,SanFrancisco,CA,USA VincenzoCapasso UniversitàdegliStudidiMilano,Milan,Italy CarlesCasacuberta UniversitatdeBarcelona,Barcelona,Spain AngusMacIntyre QueenMary,UniversityofLondon,London,UK KennethRibet UniversityofCalifornia,Berkeley,Berkeley,CA,USA ClaudeSabbah CNRS,ÉcolePolytechnique,Palaiseau,France EndreSüli UniversityofOxford,Oxford,UK WojborA.Woyczynski CaseWesternReserveUniversity,Cleveland,OH,USA Universitext is a series of textbooks that presents material from a wide variety of mathematical disciplines at master’s level and beyond. The books, often well class-tested by their author, may have an informal, personal, even experimental approach to their subject matter. Some of the most successful and established books in the series have evolved through several editions, always following the evolutionofteachingcurricula,intoverypolishedtexts. Thus as research topics trickle down into graduate-level teaching, first textbooks writtenfornew,cutting-edgecoursesmaymaketheirwayintoUniversitext. Forfurthervolumes: www.springer.com/series/223 Dirk van Dalen Logic and Structure Fifth Edition DirkvanDalen DepartmentofPhilosophy UtrechtUniversity Utrecht,TheNetherlands BasedonapreviouseditionoftheWork: LogicandStructure,4theditionbyDirkvanDalen Copyright©Springer-VerlagBerlinHeidelberg2004,1994,1983,1980 ISSN0172-5939 ISSN2191-6675(electronic) Universitext ISBN978-1-4471-4557-8 ISBN978-1-4471-4558-5(eBook) DOI10.1007/978-1-4471-4558-5 SpringerLondonHeidelbergNewYorkDordrecht LibraryofCongressControlNumber:2012953020 MathematicsSubjectClassification: 03-01,03B05,03B10,03B15,03B20,03C07,03C20 ©Springer-VerlagLondon2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Logicappearsina“sacred”andina“profane”form;thesacredformisdominantin prooftheory,theprofaneforminmodeltheory.Thephenomenonisnotunfamiliar, one also observes this dichotomy in other areas, e.g. set theory and recursion the- ory.Someearlycatastrophes,suchasthediscoveryofthesettheoreticalparadoxes (Cantor, Russell), or the definability paradoxes (Richard, Berry), make us treat a subject for some time with the utmost awe and diffidence. Sooner or later, how- ever, people start to treat the matter in a more free and easy way. Being raised in the“sacred”tradition,myfirstencounterwiththeprofanetraditionwassomething likeacultureshock.HartleyRogersintroducedmetoamorerelaxedworldoflogic byhisexampleofteachingrecursiontheorytomathematiciansasifitwerejustan ordinary course in, say, linear algebra or algebraic topology. In the course of time I have come to accept this viewpoint as the didactically sound one: before going intoesotericnicetiesoneshoulddevelopacertainfeelingforthesubjectandobtain areasonableamountofplainworkingknowledge.Forthisreasonthisintroductory textsetsoutintheprofaneveinandtendstowardsthesacredonlyattheend. ThepresentbookhasdevelopedfromcoursesgivenattheMathematicsDepart- ment of Utrecht University. The experience drawn from these courses and the re- actionoftheparticipantssuggestedstronglythatoneshouldnotpracticeandteach logicinisolation.Assoonaspossibleexamplesfromeverydaymathematicsshould beintroduced;indeed,first-orderlogicfindsarichfieldofapplicationsinthestudy ofgroups,rings,partiallyorderedsets,etc. The role of logic in mathematics and computer science is twofold—a tool for applications in both areas, and a technique for laying the foundations. The latter rolewillbeneglectedhere,wewillconcentrateonthedailymattersofformalized (orformalizable)science.Indeed,Ihaveoptedforapracticalapproach—Iwillcover thebasicsofprooftechniquesandsemantics,andthengoontotopicsthatareless abstract.ExperiencehastaughtusthatthenaturaldeductiontechniqueofGentzen lends itself best to an introduction;it is close enough to actual informal reasoning to enable students to devise proofs by themselves. Hardly any artificial tricks are involved,andattheendthereisthepleasingdiscoverythatthesystemhasstriking structuralproperties;inparticularitperfectlysuitstheconstructiveinterpretationof v vi Preface logicanditallowsnormalforms.Thelattertopichasbeenaddedtothiseditionin viewofitsimportanceintheoreticalcomputerscience.InChap.4wealreadyhave enoughtechnicalpowertoobtainsomeofthetraditionaland(eventoday)surprising modeltheoreticresults. Thebookiswrittenforbeginnerswithoutknowledgeofmoreadvancedtopics; noesotericsettheoryorrecursiontheoryisrequired.Thebasicingredientsarenatu- raldeductionandsemantics,andthelatterispresentedinconstructiveandclassical form. InChap.6intuitionisticlogicistreatedonthebasisofnaturaldeductionwithout theruleofreductioadabsurdum,andofKripkesemantics.Intuitionisticlogichas graduallyfreeditselffromtheimageofeccentricityandnowitisrecognizedforits usefulnessine.g.topostheoryandtypetheory;henceitsinclusioninanintroduc- torytextisfullyjustified.Thechapteronnormalizationhasbeenaddedforthesame reasons;normalizationplaysanimportantroleincertainpartsofcomputerscience. Traditionallynormalization(andcutelimination)belongtoprooftheory,butgrad- uallyapplicationsinotherareashavebeenintroduced.InChap.7weconsideronly weaknormalization,andanumberofeasyapplicationsaregiven. Variouspeoplehavecontributedtotheshapingofthetextatonetimeoranother; DanaScott,JaneBridge,HenkBarendregtandJeffZuckerhavebeenmosthelpful for the preparation of the first edition. Since then many colleagues and students havespottedmistakesandsuggestedimprovements;thiseditionbenefitedfromthe remarks of Eleanor McDonnell, A. Scedrov and Karst Koymans. To all of these criticsandadvisersIamgrateful.Progresshasdictatedthatthetraditionaltypewriter shouldbereplacedbymoremoderndevices;thisbookhasbeenredoneinLATEXby Addie Dekker and my wife, Doke. Addie led the way with the first three sections of Chap. 2 and Doke finished the rest of the manuscript; I am indebted to both of them,especiallyto Dokewhofoundtimeand courageto masterthe secretsofthe LATEX trade. Thanks go to Leen Kievit for putting together the derivations and for adding the finer touches required for a LATEX manuscript. Paul Taylor’s macro for prooftreeshasbeenusedforthenaturaldeductionderivations. June1994 DirkvanDalen The conversion to TEX has introduced a number of typos that are corrected in thepresentnewprinting.Manyreadershavebeenkindenoughtosendmetheircol- lection of misprints, and I am grateful to them for their help. In particular I want to thank Jan Smith, Vincenzo Scianna, A. Ursini, Mohammad Ardeshir and Nori- hiroKamide.HereinUtrechtmylogicclasseshavebeenveryhelpful;inparticular MarkoHollenberg,whotaughtpartofacourse,hasprovidedmewithusefulcom- ments.Thanksgotothemtoo. I have used the occasion to incorporate a few improvements. The definition of “subformula”hasbeenstreamlined—togetherwiththenotionofpositiveandneg- ative occurrence. There is also a small addendum on “induction on the rank of a formula”. January1997 DirkvanDalen Preface vii AttherequestofusersIhaveaddedachapterontheincompletenessofarithmetic.It makesthebookmoreself-contained,andaddsusefulinformationonbasicrecursion theoryandarithmetic.Thecodingofformalarithmeticmakesuseoftheexponen- tial;thisisnotthemostefficientcoding,butfortheheartoftheargumentthatisnot oftheutmostimportance.Inordertoavoidextraworktheformalsystemofarith- meticcontainstheexponential.Astheprooftechniqueofthebookisthatofnatural deduction,thecodingofthenotionofderivabilityisalsobasedonit.Thereareof coursemanyotherapproaches.Thereaderisencouragedtoconsulttheliterature. Thematerialof thischapteris byandlargethatof a coursegivenin Utrechtin 1993. Students have been most helpful in commenting on the presentation, and in preparingTEXversions.W.Deanhaskindlypointedoutsomemorecorrectionsin theoldtext. The final text has benefited from the comments and criticism of a number of colleagues and students. I am grateful for the advice of Lev Beklemishev, John Kuiper, Craig Smoryn´ski and Albert Visser. Thanks are due to Xander Schrijen, whosevaluableassistancehelpedtoovercometheTEXproblems. May2003 DirkvanDalen A number of corrections have been provided by Tony Hurkens; furthermore, I am indebtedtohimandHaroldHodesforpointingoutthatthedefinitionof“freefor” wasinneedofimprovement.SjoerdZwartfoundanastytypothathadescapedme andall(ormost)readers. April2008 DirkvanDalen Tothefiftheditionanewsectiononultraproductshasbeenadded.Thetopichasa longhistoryanditpresentsanelegantandinstructiveapproachtotheroleofmodels inlogic. Again I have received comments and suggestions from readers. It is a pleasure tothankDiegoBarreiro,VictorKrivtsov,EinamLivnat,ThomasOpfer,Masahiko Rokuyama,KatsuhikoSano,PatrickSkevikandIskenderTasdelen. 2012 DirkvanDalen Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 PropositionalLogic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 PropositionsandConnectives . . . . . . . . . . . . . . . . . . . . 5 2.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 SomePropertiesofPropositionalLogic . . . . . . . . . . . . . . . 20 2.4 NaturalDeduction . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.5 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.6 TheMissingConnectives . . . . . . . . . . . . . . . . . . . . . . 46 3 PredicateLogic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1 Quantifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2 Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3 TheLanguageofaSimilarityType . . . . . . . . . . . . . . . . . 56 3.4 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.5 SimplePropertiesofPredicateLogic . . . . . . . . . . . . . . . . 68 3.6 Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.8 NaturalDeduction . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.9 AddingtheExistentialQuantifier . . . . . . . . . . . . . . . . . . 91 3.10 NaturalDeductionandIdentity . . . . . . . . . . . . . . . . . . . 93 4 CompletenessandApplications . . . . . . . . . . . . . . . . . . . . . 97 4.1 TheCompletenessTheorem . . . . . . . . . . . . . . . . . . . . . 97 4.2 CompactnessandSkolem–Löwenheim . . . . . . . . . . . . . . . 104 4.3 SomeModelTheory . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.4 SkolemFunctionsorHowtoEnrichYourLanguage . . . . . . . . 127 4.5 Ultraproducts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 5 Second-OrderLogic . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 6 IntuitionisticLogic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.1 ConstructiveReasoning . . . . . . . . . . . . . . . . . . . . . . . 155 ix x Contents 6.2 IntuitionisticPropositionalandPredicateLogic . . . . . . . . . . . 157 6.3 KripkeSemantics . . . . . . . . . . . . . . . . . . . . . . . . . . 164 6.4 SomeModelTheory . . . . . . . . . . . . . . . . . . . . . . . . . 174 7 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 7.1 Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 7.2 NormalizationforClassicalLogic . . . . . . . . . . . . . . . . . . 191 7.3 NormalizationforIntuitionisticLogic . . . . . . . . . . . . . . . . 197 7.4 AdditionalRemarks: StrongNormalizationand the Church– RosserProperty . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 8 Gödel’sTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 8.1 PrimitiveRecursiveFunctions . . . . . . . . . . . . . . . . . . . . 209 8.2 PartialRecursiveFunctions . . . . . . . . . . . . . . . . . . . . . 218 8.3 RecursivelyEnumerableSets . . . . . . . . . . . . . . . . . . . . 229 8.4 SomeArithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 8.5 Representability . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 8.6 Derivability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 8.7 Incompleteness. . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 Chapter 1 Introduction Withoutadoptingoneofthevariousviewsadvocatedinthefoundationsofmathe- matics,wemayagreethatmathematiciansneedandusealanguage,ifonlyforthe communicationoftheirresultsandtheirproblems.Whilemathematicianshavebeen claimingthegreatestpossibleexactnessfortheirmethods,theyhavebeenlesssen- sitive as to their means of communication.It is well knownthat Leibniz proposed toputthepracticeofmathematicalcommunicationandmathematicalreasoningon afirmbase;itwas,however,notbeforethenineteenthcenturythatthoseenterprises were (more) successfully undertaken by G. Frege and G. Peano. No matter how ingeniously and rigorously Frege, Russell, Hilbert, Bernays and others developed mathematicallogic,itwasonlyinthesecondhalfofthiscenturythatlogicandits languageshowedanyfeaturesofinteresttothegeneralmathematician.Thesophis- ticatedresultsofGödelwereofcourseimmediatelyappreciated,butforalongtime theyremainedtechnicalhighlightswithoutpracticaluse.EvenTarski’sresultonthe decidability of elementary algebra and geometry had to bide its time before any applicationsturnedup. Nowadays the applications of logic to algebra, analysis, topology, etc. are nu- merous and well recognized. It seems strange that quite a number of simple facts, withinthegraspofanystudent,wereoverlookedforsuchalongtime.Itisnotpos- sible to give proper credit to all those who opened up this new territory. Any list would inevitably show the preferences of the author, and neglect some fields and persons. Letusnotethatmathematicshasafairlyregular,canonicalwayofformulating its material, partly by its nature, partly under the influence of strong schools, like the one of Bourbaki. Furthermore the crisis at the beginning of this century has forcedmathematicianstopayattentiontothefinerdetailsoftheirlanguageandto theirassumptionsconcerningthenatureandtheextentofthemathematicaluniverse. Thisattentionstartedtopayoffwhenitwasdiscoveredthattherewasinsomecases acloseconnectionbetweenclassesofmathematicalstructuresandtheirsyntactical description.Hereisanexample: ItiswellknownthatasubsetofagroupGwhichisclosedundermultiplication andinverse,isagroup;however,asubsetofanalgebraicallyclosedfieldF which D.vanDalen,LogicandStructure,Universitext,DOI10.1007/978-1-4471-4558-5_1, 1 ©Springer-VerlagLondon2013

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.