ebook img

LOFT as a discovery machine for jetted Tidal Disruption Events PDF

1.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview LOFT as a discovery machine for jetted Tidal Disruption Events

LOFT as a discovery machine for jetted Tidal Disruption Events 5 1 0 2 n a White Paper in Support of the Mission Concept of the J 2 Large Observatory for X-ray Timing 1 ] E H . h Authors p - o E.M.Rossi1,I.Donnarumma2,R.Fender3,P.Jonker4,9, tr S.Komossa5,Z.Paragi6,I.Prandoni7,L.Zampieri8 s a [ 1 1 LeidenObservatory,LeidenUniversity,P.O.Box Hügel69,53121Bonn,Germany v 9513,2300RA,Leiden,TheNetherlands 6 JointInstituteforVLBIinEurope,Postbus2,NL- 4 2 INAF-IAPS,ViaFossodelCavaliere100,00133, 7990AADwingeloo,theNetherlands 7 Rome,Italy 7 INAF-IRABologna,ViaP.Gobetti101,40129 7 2 3 DepartmentofPhysics,OxfordUniversity,Keble Bologna,Italy 0 Road,OX13RH,Oxford,UK 8 INAF-OsservaorioAstronomicodiPadova,Vicolo . 4 NetherlandsInstituteofSpaceResearch,,Nether- dell’Osservatorio5,I-35122Padova,Italy 1 0 landsInstituteofSpaceResearch,Utrecht,theNether- 9 DepartmentofAstrophysics/IMAPP,RadboudUni- 5 lands versityNijmegen,P.O.Box9010,6500GLNijmegen, 1 5 Max-Planck-InstitutfürRadioastronomie,Aufdem TheNetherlands : v i X r a LOFT asadiscoverymachineforjettedTidalDisruptionEvents Preamble TheLargeObservatoryforX-rayTiming,LOFT,isdesignedtoperformfastX-raytimingandspectroscopy with uniquely large throughput (Feroci et al., 2014). LOFT focuses on two fundamental questions of ESA’s Cosmic Vision Theme “Matter under extreme conditions”: what is the equation of state of ultra- dense matter in neutron stars? Does matter orbiting close to the event horizon follow the predictions of generalrelativity? ThesegoalsareelaboratedinthemissionYellowBook(http://sci.esa.int/loft/ 53447-loft-yellow-book/)describingtheLOFT missionasproposedinM3,whichcloselyresembles theLOFT missionnowbeingproposedforM4. TheextensiveassessmentstudyofLOFT asESA’sM3missioncandidatedemonstratesthehighlevel ofmaturityandthetechnicalfeasibilityofthemission,aswellasthescientificimportanceofitsunique core science goals. For this reason, the LOFT development has been continued, aiming at the new M4 launch opportunity, for which the M3 science goals have been confirmed. The unprecedentedly large effectivearea,largegrasp,andspectroscopiccapabilitiesofLOFT’sinstrumentsmakethemissioncapable of state-of-the-art science not only for its core science case, but also for many other open questions in astrophysics. LOFT’s primary instrument is the Large Area Detector (LAD), a 8.5m2 instrument operating in the 2–30keVenergyrange,whichwillrevolutionisestudiesofGalacticandextragalacticX-raysourcesdown totheirfundamentaltimescales. ThemissionalsofeaturesaWideFieldMonitor(WFM),whichinthe 2–50keVrangesimultaneouslyobservesmorethanathirdoftheskyatanytime,detectingobjectsdownto mCrabfluxesandprovidingdatawithexcellenttimingandspectralresolution. Additionally,themissionis equippedwithanon-boardalertsystemforthedetectionandrapidbroadcastingtothegroundofcelestial brightandfastoutburstsofX-rays(particularly,Gamma-rayBursts). This paper is one of twelve White Papers that illustrate the unique potential of LOFT as an X-ray observatoryinavarietyofastrophysicalfieldsinadditiontothecorescience. Page2of10 LOFT asadiscoverymachineforjettedTidalDisruptionEvents 1 Introduction Mountingobservationalevidenceissupportingascenariowheremostgalacticnucleihostsupermassiveblack holes(SMBHs). Gasinflowfromlargerscalescausesasmall( 1%)fractionofSMBHstoaccretecontinuously ∼ formillionsofyearsandshineasquasars. Mostofthemareinstead“quiescent”,accreting–ifatall–atahighly sub-Eddingtonrate. Observationally,itisthereforehardtoassessthepresenceandmeasurethemassofmostof SMBHs,beyondthelocaluniverse. Occasionally,however,asuddenincreaseoftheaccretionratemayoccur, ifalargemassofgas,e.g. astar,fallsintothetidalsphereofinfluenceoftheblackholeandfindsitselftorn apartandaccreted. Wecalltheseevents“tidaldisruptionevents”(TDEs). TDEscanresultinasuddenriseof electromagneticemission. Theycanreachtheluminosityofaquasarbuttheyarerare( 10 5yr 1 pergalaxy) − − ∼ andlastseveralmonths,oryearsinsoftX-rayKomossa(2002). Thedetectionandstudyoftheseflarescandeliverotherimportantastrophysicalinformation,beyondprobing the presence of a SMBH. After stellar disruption, part of the stellar material is accreted onto the black hole, causingaluminousflareofradiation. Ifthestariscompletelydisrupted,itsdebrisisaccretedatadecreasing rateof M˙ t 5/3 (Rees,1988;Phinney,1989). Therefore,TDEsallowustostudytheformationofatransient − ∝ accretiondiscanditscontinuoustransitionthroughdifferentaccretionstates. Thesuper-Eddingtonphase— whichoccursonlyforSMBHmasses M < 107 M —istheoreticallyuncertain,butitmaybeassociatedwitha powerfulradiativelydrivenwind(Rossi&∼Begelm(cid:12)an,2009),thatthermallyemits 1041 1043 ergs 1,mainly − ∼ − atopticalfrequencies(Strubbe&Quataert,2009;Lodato&Rossi,2011). Thediscluminosity( 1044 1046 ∼ − erg s 1), instead, peaks in the far-UV/soft X-rays (Lodato & Rossi, 2011). Of great theoretical importance − wouldalsobethepossibilitytoobservetheformationandevolutionofanassociatedjet,poweredbythissudden accretionepisode. Furthermore,TDEsaresignpostsofsupermassivebinaryblackholes,astheirlightcurveslook characteristicallydifferentinthepresenceofasecondBH,whichactsasaperturberonthestellarstream(Liu etal.,2009),asrecentlyobservedinafirstcandidateevent(Liuetal.,2014). Finally,wenotethat,inX-rays, TDEsrepresentanewprobeofstronggravity,forinstancetracingprecessioneffectsintheKerrmetric. ThefirstTDEswerediscoveredinROSATsurveysoftheX-raysky(e.g.,Komossa&Bade,1999;Grupeetal., 1999)—seeKomossa(2002)forareview. Later,GALEXallowedfortheselectionofTDEsatUVfrequencies (Gezari et al.,2009;Gezarietal.,2012);manyofthemostrecentTDEcandidatesarenowfoundinoptical transientsurveys(VanVelzenetal.,2011a;Cenkoetal.,2012;Chornocketal.,2014). Analternativemethodto selectTDEcandidatesistolookforopticalspectrawithextremehigh-ionizationandBalmerlines(Komossa etal.,2008;Wangetal.,2012).This“thermal”SpectralEnergyDistribution(SED)ofTDEsisbelievedtobe associatedwithemissionfromthediscortheradiativelydrivenwind. RecentlytheSwiftBurstAlertTelescope(BAT)instrument(Bloometal.,2011;Burrowsetal.,2011;Cenko etal.,2012),triggeredtwoTDEcandidatesinthehardX-rayband. Amulti-frequencyfollow-upfromradio toγ-raysrevealedanewclassofnon-thermalTDEs. Itiswidelybelievedthatemissionfromarelativisticjet (Γ 2,Zaudereretal.,2013;Bergeretal.,2012)isresponsibleforthehardX-rayspectrum(withpower-law ≈ photonindexα 1.6 1.8)andtheincreasingradioactivity(Levanetal.,2011),detectedafewdaysafterthe ∼ − trigger. ThebeststudiedofthetwoeventsisSwiftJ1644+57(SwJ1644inshort). Thetwomainfeaturesthat supporttheclaimthatSwJ1644isaTDEarei)theX-raylightcurvebehaviour,thatfollowsL M˙ (t τ) 5/3 x − ∝ ∝ − afterafewdays(τ 3day)fromthetrigger,andii)theradiolocalizationoftheeventwithin150pcfromthe ≈ centreofaknownquiescentgalacticnucleus(Zaudereretal.,2011). In this White Paper, we use the Sw J1644 X-ray lightcurve (see next section) to estimate detection rate prospects for the proposed M4 mission LOFT (Feroci et al., 2012). We chose to focus on predictions for non-thermalTDEs,bestsuitedtobeaLOFT target(LOFT couldalsoseethelatecoronahardX-rayemission in disk-dominated TDEs but only in the local Universe; Strubbe & Quataert, 2009). On board there are two maininstruments: theLargeAreaDetector(LAD,2-50keV)optimallysuitedforX-raytimingstudiedthanksto the8.5m2 areapeakingat 8keVandtheWideFieldMonitor(WFM)witha 4srFoVaimedattriggering ∼ ∼ Page3of10 LOFT asadiscoverymachineforjettedTidalDisruptionEvents follow-upobservationswiththeLADforavarietyofsources(bothgalacticandextra-galactic). Weconsider bothandgivepossiblediscoveryandidentificationstrategies. Ourconclusionscanbesummarizedasfollows: theWideFieldMonitorcanallowtoserendipitouslydetectnon-thermalTDEs,atahigherrates(between • oneandafewtensperyear)thananycurrentlyplannedsurveymissions. theLargeAreaDetectorcaneffectivelyfollowupandidentifyradiotriggeredcandidates. Insynergy • withSKAinsurveymode,LADcaninprinciplesuccessfullyrepointeachradiocandidate,andmeasure itslightcurvedecayindexandspectralproperties. LAD,togetherwithAthena, willbethebestX-ray followupinstrumentintheSKAera. Theexpectedrateisbetweenafewtoafewhundredsperyr. LOFT isauniquemissionforjettedTDEs,becauseitcancombinethebenefitsofaWFMandafollow-up • instrumentwithawideenergyrange(upto50keV).Theattractiveprospectisthatofbuildingforthe firsttimeasampleofwellstudiedTDEsassociatedwithnon-thermalemissionfromjets. Thiswillallow ustostudydisc-jetformationandtheirconnection,inacomplementarywaywithrespecttoothermore persistentsourcessuchasactivegalacticnucleiandX-raybinaries. Inaddition,jettedTDEscanuniquely probethepresenceofsupermassiveblackholeinquiescentgalaxieswellbeyondthelocaluniverse. Throughout this paper we use the following cosmological parameters: Ω = 0.25, Ω = 0.75 and H = M λ 0 70km/s/Mpc. 2 X ray emission of jetted TDEs − In2011, BATdiscoveredwhatwasfirstthoughttobeapeculiargamma-rayburst, nowknownasSwJ1644. Whatfirstcaughttheattentionwasitsflaringactivity,whichcausedmultipleBATtriggers,followedbyanX-ray lightcurvethatextendedtomuchlongertimescalesthananyknownGRB(Levanetal.,2011). Thesourcewas confirmedtobeofextra-galacticorigin,withapeakluminosity 100timeshigherthanthatofbrightactive ∼ galacticnuclei(Burrowsetal.,2011;Levanetal.,2011). Theobserved0.3-10keVlightcurveofSwJ1644is showninFig.1(bluesquares). Activitywasalreadydetected 3daysbeforetheBAT“official”triggerandthe ≈ startofXRTobservations(Burrowsetal.,2011). Consideringthisdelay,theX-raylightcurveasafunctionof time∆tsincethetrigger(∆t = 0)maybedescribedby τ+∆t −5/3 Lx,iso(∆t) 1.5 1048 ergs−1 , (1) ≈ × τ ! (Fig.1, solid line). L is the isotropic equivalent luminosity, computed from the X-ray flux. The X-ray x,iso luminosity can be related to the jet luminosity assuming a constant radiation efficiency in X-rays (cid:15) , L = x j L (1 cosθ)/((cid:15) δ2),whereθ isthejetopeningangleandδtheDopplerfactor. Theradiationefficiencyof x,iso j x j − J1644in1-10keVband(i.e. thefractionofthetotalluminosityemittedinthatband)isinferredfromBAT,XRT andFermispectralinformationtobe(cid:15) 0.2(Burrowsetal.,2011). WenotethattheX-rayspectrumofSw x ≈ 1644remainedhard(α 1.4 1.7)overthedurationoftheeventwiththeexceptionoftheshortdipsinthe ∼ − initialvariablephase(Saxtonetal.,2012). Inthefollowing,weassumethatthelightcurveofJ1644istheTDEprototypicalX-raylightcurveinthe1-10 keVband,foreventswhereweobservenon-thermalandrelativisticallyboostedemission,associatedwithjets. Then,ifthejetluminositytracesthemassaccretionrate,L M˙,itispossibletorescaleeq.1foreventswith j ∝ differentdelayoftriggertime,redshift,supermassiveblackhole(SMBH)andstellarmass(seeDonnarumma& Rossi,2014,fordetails). Page4of10 LOFT asadiscoverymachineforjettedTidalDisruptionEvents Figure1: TheX-ray(0.3-10keV)lightcurveofJ1644asafunctionoftimefromtheX-raytrigger: data(absorbedflux, bluesquarestakenfrompubliclyavailableXRTlightcurvesathttp://www.swift.ac.uk/xrt_curves/)versusourmodeling (dot-dashedline). Thedecaycanbefittedby(t τ) 5/3,withτ=3day. − − 3 Monte Carlo calculations for rate predictions WeconstructapopulationofTDEs,witheacheventcharacterizedbyatriggertimeτ,aredshift,aSMBHmass M and a mass of the star m that is disrupted. The trigger time is chosen randomly from a one year interval. ∗ ThemassdistributionofSMBHsasafunctionofredshiftistakenfromShankaretal.(2013). Inparticular,we considerthetwoaccretionmodelsthatyieldthelargestandthelowestmassfunctionpredictions,toquantify theuncertaintyonourexpectedTDErates,duetotheimperfectknowledgeoftheblackholemassdistribution. Finally,weassumeapopulationofmainsequencestarsingalacticnucleithatfollowsaKroupaInitialMass Function,(Kroupa,2001). Thisintrinsicdistributionisthenrescaledby2πΓ 2/(4π) = 1/(2Γ2) 0.125,i.e. thefractionofsolidangle − ≈ subtendedbytheemission,fromatwosidedjet. Wearenowinthepositiontomakepredictionsforspecific instruments,onceanobservingstrategyisspecified. Inthefollowingtwosections,wefocusontheinstruments onboardofLOFT.Wethencomparetheirperformanceswiththoseofotherplannedmissionsinsec. 6. 4 Prospect for direct detection with LOFT Wide Field Monitor TheWideFieldMonitor(WFM)ofLOFT (Ferocietal.,2012)willsurvey1/3rd oftheskyineachpointing, reachinga5-σsensitivityof 8 9 10 11 ergcm 2s 1perdayintheenergyrange2-50keV.Thecombination − − − ∼ − × ofitsskycoverageandsensitivitymakestheWFMagoodhunterforserendipitouslydetectingTDEs. Tobe abletodetectandidentifyaTDE,weadoptadailyfluxthresholdthatcorrespondsroughlytoa25-σdetection, allowingustomeasureitstemporaldecayingindex. Wethereforestartfromthe1day5-σfluxlimitin2 50keV − Page5of10 LOFT asadiscoverymachineforjettedTidalDisruptionEvents Figure2: Leftpanel: percentageof eventratesasafunctionofBHmass. Rightpanel:eventratesfortheWFM onboardofLOFT asafunctionof redshift. In both panels, two dif- ferent black hole distribution func- tions are shown (blue solid line: G model; blue dot-dashed line: Gz fromShankaretal.(2013)). bandandthenweextrapolateitbackwardusingtheexpectedt 5/3 decay. Wethentakethefluxcorrespondingto − 4pointsoverthisperiodandcomputetheiraverage. Thisaveragefluxdefinesouridentificationfluxthreshold. Toclaimidentification,eacheventinoursimulationsneedstohaveafluxaveragedoveronedayabovethisflux limit. The results are shown in Fig.2 and Table 1. As showed in Fig. 2 (left panel), the TDE rate distribution steadilyincreasesgoingtolowerBHmassesfromafewpercentatM 108M uptoamaximumof 20% BH atM 106 M . TheratedistributiondroptoafewpercentsatM ∼108M(cid:12) isanaturalconseque∼nceof BH BH ∼ (cid:12) ∼ (cid:12) the BH mass dependence in Eq. 1. In total, we estimate tens of events per year up to z 0.6, where we max ≈ definez astheredshiftwheretheratedistributionreachesavalueof0.5yr 1. Thepeakrateis 6yr 1 at max − − ∼ z = 0.2 0.3(seeFigure2,rightpanel). WenotethatthereportedvaluesareforabeamingfactorofΓ = 2,as − measuredfromradioobservations. WhencomparingourresultswithBAT/Swiftobservations,however,one realizesthatasuppressionfactorfortheseratesmaybeneeded(see Donnarumma&Rossi,2014,fordetails). ThequantificationofthisfactorischallengingbecauseBATdoesnotoperateinsurveymodeandthereareover 500 trigger criteria, that make our use of a flux limit survey a rather simplified approach. A somewhat hard lowerlimitestimatesuggestsasuppressionfactoroftwoordersofmagnitude. Thiscanbeduetoacombination ofalargerbeamingfactorandajetproductionefficiency< 1. Forexample,abeamingfactorofΓ = 20inthe X-rayemissionregionwouldaccountfortheBATrateandbeconsistentwithhighenergyobservation(Burrows etal.,2011). ThiswouldimplyphysicallydifferentradioandX-rayemittingregions. Thereforeinthemost pessimisticcase,theWFMwouldobserveTDEsatarateof 0.3 0.8yr 1,similartothatofBAT.Foralower − ≈ − limitontheratesforallX-rayinstrumentsmentionedinthefollowing,thesamefactorshouldbeapplied. Of course,thisdoesnotechangethediscussionontherelativeperformanceofthemissions. 5 LAD as excellent follow-up instrument of SKA triggers The LAD on board of LOFT (2-50 keV) is a collimated instrument with 1 degree field of view, and a wide energyrange(2-50keV).Itsbackgroundlimited10 σsensitivityis 3 10 12 ergcm 2 s 1 inthe2-10keV − − − − ≥ × band,fora1000sexposure(seeFig.3). GiventhesmallerfieldofviewandthehighersensitivitywithrespecttotheWFM,LADismoreeffective Page6of10 LOFT asadiscoverymachineforjettedTidalDisruptionEvents Figure3: LADsensitivitylimitasafunction ofexposuretimefordifferentS/Nratioscor- responding to a systematics of 0.25% on the backgroundknowledge. Frombottomtotop: S/N 3,5,10,150,250. ∼ asafollow-upinstrument. JettedTDEshaveastrongradiocounterpartandtheSquareKilometerArray(SKA Dewdneyetal.,2013)insurveymodehasthepotentialtodetectafewhundredeventsperyearVanVelzenetal. (2011);Donnarumma&Rossi(2014). Wethereforeinvestigateapossiblestrategytoefficientlyfollowing-up SKAtriggeredcandidateeventsandthenassesstheactualrateoftheirX-raycounterparts. SincetheradioTDE emissionisquitefeaturelessandtheTDEsignature(i.e. thet 5/3 decay)seemstobeaprerogativeofitsX-ray − emission,theX-rayfollow-upofradiocandidatesisessentialfortheiridentification,togetherwithaprecise radiolocalisation. TheroleofLOFT inthisrespectbecomesfundamentalbecauseSwift,ChandraandXMM areunlikelytobeoperatingbythetimeSKAinsurveymodewillbedetectingcandidates. Weconsidera1-daydelayintheX-rayrepointing. SimilarlytothestrategyadoptedfortheWFM,werequire atleast4pointingsspreadover4days,eachwithaS/Nratioofatleast10. Eachofthemrequiresanexposure timelessthan1000s. ThishighS/Nisrequiredinordertocharacterizeboththetemporalandspectralbehavior ofthesource. Followingthesameprocedureexplainedintheprevioussection,wedefineanidentificationflux thresholdof 10 11 ergcm 2 s 1 inthe2-10keVband,thatisthentranslatedinthecorrespondingun-absorbed − − − ≥ valueinthe1-10keVband,theenergyrangeadoptedinourmodelling. ForeacheventintheMonteCarlosimulations,wecalculatetheaverageX-rayfluxoverthe4pointingsand compareitwiththeidentificationfluxthreshold. Finally,ourdetectionratesarerescaledaccordingtothefact thattheLOFT repointingvisibilityallowsaskyaccessibilityof 75%(Ferocietal.,2014). ∼ Figure4showstheexpectedrateofjettedTDEsasafunctionofBHmass(leftpanel)andofredshift(right panel). AsregardstheirBHmassdistribution, 25%ofalleventshaveBHswithmasses 106 M ,andevents withBHmasses< 107 M dominatetheredsh∼iftdistributionatallepochs. ≈ (cid:12) (cid:12) Thistime,theredshiftdistributionextendsabovez = 1(z 1.2)(seeTable1,bottomsection),withmost max ≈ of the TDEs expected around z w 0.4 (right panels). The peak rates are roughly between 4 and 20 events ≈ peryear. Intotal,LADshouldbeabletodetectroughlyhalfoftheSKAtriggeredTDEs,i.e. between 130 ≈ and 350 yr 1. For these events, the instrument broad energy band (2 50 keV) should enable us to better − ’ − characterizetheenergybudgetoftheX-raycomponent. Page7of10 LOFT asadiscoverymachineforjettedTidalDisruptionEvents Figure4: The same as Fig.2,butfortheLAD instrument. These events have been first detected by SKA in wide radio surveys at 1.4 GHz. For details on the radio lightcurve modelling see Donnarumma & Rossi (2014), and in particular their model "MLD". 6 Discussion and conclusions Although the LAD instrument would be roughly 5 times more effective in identifying TDEs, the WFM has theabilitytoserendipitouslycatchevents,closertotheironset. ThisisshowninFig.5,wherethecumulative distributionofthetriggerdelayisshownasafunctionofredshift(fromz=0.1upto0.6,thatisthez ofWFM max TDEs). WhiletheWFMwillbeabletodetectTDEsatanyepoch,theLADwillpreferentiallycatchthemat latertimes,after 10daysfromtheirbeginning. ThislatterdelayisnotduetoanintrinsicproblemoftheLAD ≈ instrument,butitisanaturalconsequenceofthedelayintroducedbytheSKAtrigger: theradiofluxincreases overtime,andbecomesbrightenoughforaSKAdetectiononlyafteratleast 10daysfromthebeginningofthe ≈ event(Donnarumma&Rossi,2014). Anotherdifferenceintheperformanceofthetwoinstrumentsistheability ofLADtogotwiceasfarinredshift(z 1.2)thanWFM(z 0.6). Synergybetweenthetwoinstrumentscan ∼ ∼ alsobeenenvisaged. TheLADinstrumentcanrepointwithin< 1daycandidatesdetectedwithWFM,allowing thestudyoftheeventlightcurve,alsoatearlytimes(unlikeSKAtriggeredTDEs). ThepotentialoftheWFMforjettedTDEdiscoveriescanbeappreciatedbettercomparingitsperformance witheRosita. Currently,thissurveyrapresentsthebestchancetoserendipitouslydiscoverTDEsinX-ray,in thenearfuture(Merlonietal.,2012). Indeed,thecombinationofagreatsensitivityin0.2-12keVbandand thepointingstrategy(4-yearallskysurvey)makesittheoptimalhunterofthermalTDEs,with 1000objects ∼ perscanatasensitivitylevelseveraltimesbetterthanRASS.However,itwillbelessperformingatdetecting non-thermalTDEs. Followingtheidentificationstrategydetailedabove,eRositawillbeabletodetectafactor3 to4lessjettedTDEsthantheWFMinthehardX-rayband(seealsoKhabibullinetal.,2014). Thisisbecause eRositawillnotcoveraneventrepeatedly,butonlyevery6-month. LADcaninsteadbecomparedwiththeWideFieldImager(WFI)onboardofAthena,theESAL2mission, planned to operate in 2028. We stress that radio counterparts need an X-ray follow-up to be confirmed and LOFT,togetherwithAthena,islikelytobetheonlyeffectiveinstrumentoperatingsimultaneouslywithSKA.If weusetheverysamefollow-upstrategyandweconsideranoptimisticrepointingefficiencyof50%,thenAthena maybeabletoidentifyslightlymoreTDEs(afactor1.1-1.2). Thereasonofthissmalldifferenceinidentification Page8of10 LOFT asadiscoverymachineforjettedTidalDisruptionEvents Figure5: CumulativedistributionsofdelaysindetectingtheTDEfromtheexplosiontime,fordifferentredshifts. Weshow resultsfortheWFM(blacklines)andLADfollow-upsofradiotriggeredTDEs(bluelines). Thedifferentlinestylesarefor z=0.1,0.2,0.37,0.6fromrighttoleftforWFMandviceversaforLAD.NotethattheLADinstrumentcanrepointevents onlyafter10days,becausetheradiolightcurvebecomessufficientlybrighttobedetectedbySKAonlyafterthattime. ratesisthatonlyamoderateX-raysensitivity( > 5 10 12 erg cm 2 s 1)isrequiredtoobtainacompleteset − − − ∼ × ofX-raycounterpartsoftheradiotriggeredTDEs. However,theLADwiderenergyrangehastheadvantage ofbetterconstrainingthetotalemittedluminosityandthusthejetenergycontent. Mostimportantly,Athena willnothaveawidefieldmonitorinstrumentonboardandwithoutaradiotriggerwillbeblindtoTDEs,while LOFT ontheotherhandcandoTDEscienceautonomously. Thus,inthisrespect,LOFT isamorecomplete mission,combiningthepotentialforserendipitousdiscoverieswiththeWFMandrepointingabilitywithLAD. Insummary,LOFT hasthepotentialtofinallyopenaneweraofstatisticalstudiesofTDEsandexploitthem toaddressopenquestionsingalaxyformationandhighenergyastrophysics. Withafewtenstoafewhundreds ofeventsandtheirradiocounterparts,onemayconstraintheSMBHmassfunctionbelowredshift1.5andthe physicsofjetformationduringtransientaccretionepisodes: e.g. jetefficiency,Lorentzfactor,andwhatisthe connectionwithasuper-Eddingtonaccretionphase. References Burrows,D.N.etal.2011,Nature,476,421 333,203 Donnarumma,I.,&Rossi,E.M.2014,Ap.J.,accepted Bower,BowerG.C2011ApJ,732,L12 Kroupa,P.2001,Mon.Not.Roy.Astro.Soc.,322,231 Campana,S.2011,Nature,480,69 FerociM.,etal.2014,SPIE,9144,91442 CannizzoJ.K.,TrojaE.,&LodatoG.,2011,Ap.J.,742,32 Berger,E.,Zauderer,A.,Pooley,G.G.,Soderberg,A.M.,Sari,R., CarilliC.L.,RawlingsS.,2004,NewAstron.,48,979 Brunthaler,A.&Bietenholz,M.F.,2012Ap.J.,748,36 CenkoS.B.,etal.,2012,Ap.J.,753,77 Bloom,J.S.,Giannios,D.,Metzger,B.D.,etal.2011,Science, ChornockR.,etal.,2014,Ap.J.,780,44 Page9of10 LOFT asadiscoverymachineforjettedTidalDisruptionEvents R1 R2 z R1 R2 z peak peak peak max yr 1 yr 1 yr 1 yr 1 − − − − X-raysurveys LOFT WFM 24.5 67 0.2-0.3 2.3 6 0.6 eRosita 8 15 0.4 0.15 0.5 0.4 Radioselectedsamples LOFTLAD 135 352 0.4 8 22 1.2 Athena 163 385 0.4 7 20 1.4 Table1: FutureX-raysurveyspredictions: 1stand2ndcolumnsaretotalyearlyrate(thesubscripts1and2arefortheGz andGMFs,respectively),3rdcolumnredshiftatthepeakrate,4thand5thcolumnsmaximumpeakrateand6thcolumn maximumredshift,definedasthezwheretherateis0.5. X-rayexpectedratesarederivedforΓ=2. Donley,J.L.,Brandt,W.N.,Eracleous,M.&Boller, 359 DewdneyP.E.,etal.,2013,SKA1SystemBaselineDesign.Tech. MerloniA.etal.,2012,ArXive-prints,arXiv1209.3114M rep.,SKAProgramDevelopment,DocumentNumber: SKA- Metzger,B.D.,Giannios,D.&Mimica,P.,2012,Mon.Not.Roy. TEL-SKO-DD-001 Astro.Soc..420,3528 FerociM.,etal.2012,ExperimentalAstronomy,34,415 NarayanR.,etal.,2003,PASJ,55,L69 GezariS. , HeckmanT. , S. B. Cenko, M. Eracleous, K. Forster, Phinney,E.S.Nature,1989,340,595 T.S.Gonçalves,D.C.Martin,P.Morrissey,S.G.Neff,M.Seib- Rees,M.J.,1988,Nature,333,523 ert,D.Schiminovich,&T.K.Wyder,2009,Ap.J.698,1367 Reis,etal.,2012,Science,337,949 Gezari,S.etal.Nature,485:217 Rossi, E. M. & Begelman, M. C. 2009 Mon. Not. Roy. Astro. GranotJ.&SariR.,2002,Ap.J.,568,820 Soc.,392,1451 Grupe,D.,Thomas,H.-C.,&Leighly,K.M.1999,Astron.Astro- Sa¸dowskiA.,NarayanR.,McKinneyJ.,TchekhovskoyA.,2014, phys.,350,L31 Mon.Not.Roy.Astro.Soc.,439,503 Guillochon,J.&Ramirez-Ruiz,E.2013,Ap.J.,767,25 Sari,R,Kobayashi,S.,&Rossi,E.M.2010,Ap.J.,708,605 Hayasaki,K.andStone,N.andLoeb,A.2013,Mon.Not.Roy. SaxtonC.J.,SoriaR.,WuK.,KuinN.P.M.,2012,Mon.Not.Roy. Astro.Soc.434,909 Astro.Soc.,422,1625 HodgeJ.A.,BeckerR.H.,WhiteR.L.,RichardsG.T.,2013,Ap. ShankarF.,WeinbergD.H.,Miralda-EscudéJ.,2013,Mon.Not. J.,769,125 Roy.Astro.Soc.,428,421 Kesden,M.,2012,PhRvD,85,4037 Stone,N.andSari,R.andLoeb,A.2013Mon.Not.Roy.Astro. Khabibullin I., Sazonov S., Sunyaev R., 2014, Mon. Not. Roy. Soc.,435,1809 Astro.Soc.,437,327 StrubbeL.E.&Quataert,E.2009,Mon.Not.Roy.Astro.Soc., Komossa,S.,2002,ReviewsinModernAstronomy,15,27 400,2070 Komossa,S.,etal.2008,ApJ,678,L13 Tchekhovskoy,A.,Metzger,B.D.,Giannios,D.&Kelley,L.Z., Komossa,S.,&Bade,N.1999,Astron.Astrophys.,343,775 2013,Mon.Not.Roy.Astro.Soc.,accepted. KrimmH.A.etal.,2011,AstronomerTelegrams,3384 vanVelzenS.,etal.,2011,Ap.J.,741,73 KrimmH.A.etal.,2013,Ap.J.Suppl.,209,14 vanVelzenS.,FrailD.,KördingE.,FalckeH.,2011,Mon.Not. Levan,A.Jetal.2011,Science,333,199 Roy.Astro.Soc.,417,51 Levan,A.2012,InEuropeanPhysicalJournalWebofConferences, vanVelzenS.,FrailD.,KördingE.,FalckeH.,2013,Astron.As- 39,2005 trophys.,552,A5 Lien A., Sakamoto T., Gehrels N., Palmer D., Barthelmy S., Wang,T.-G.,Zhou,H.-Y.,Komossa,S.,etal.2012,Ap.J.,749, GrazianiC.,CannizzoJ.,2014,Ap.J.,783,24 115 LiuF.,LiS.,ChenX.,2009,ApJ706,L133 Zauderer,B.A.,Berger,E.,Margutti,R.,Pooley,G.G.,Sari,R., LiuF.,LiS.,KomossaS.,2014,ApJ786,103 Soderberg,A.M.,Brunthaler,A.&Bietenholz,M.F.,2013,Ap. LodatoG.,KingA.R.,&PringleJ.E.,2009,Mon.Not.Roy.Astro. J.,767,152 Soc.,392,332 Zauderer,B.A.,etal.,2011,Nature,476,425 LodatoG.&Rossi,E.M.,2011,Mon.Not.Roy.Astro.Soc.,410, Page10of10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.