Loci of Points Inspired by Viviani’s Theorem 7 1 0 EliasAbboud 2 Facultyofeducation, BeitBerlCollege,DoarBeitBerl44905,Israel n [email protected] a J January 26,2017 4 2 ] Viviani (1622-1703),who was a student and assistant of Galileo, discoveredthat O equilateraltrianglessatisfythe followingproperty: the sumofthedistancesfromthe H sidesofanypointinsideanequilateraltriangleisconstant. . Viviani’stheoremcanbeeasilyprovedbyusingareas. JoiningapointP insidethe h t triangletoitsverticesdividesitintothreeparts.Thesumoftheirareaswillbeequalto a theareaoftheoriginalone. Therefore,thesumofthedistancesfromthesideswillbe m equaltothealtitude,andthetheoremfollows. [ Givenatriangle(whichincludesbothboundaryandinnerpoints),∆,andapositive 1 constant,k,weshallconsiderthefollowingquestions: v Question 1. What is the locus T (∆) of points P in ∆ such that the sum of the k 9 distancesof P toeachofthesidesof ∆equalsk? 3 Question2. WhatisthelocusS (∆)ofpointsP intheplanesuchthatthesumof 3 k thesquaresofthedistancesof P toeachofthesidesof ∆equalsk? 7 0 By Viviani’stheorem, theanswer to the firstquestionis straightforwardforequi- . lateral triangles: If k equals the altitude of an equilateral triangle, then the locus of 1 0 pointsistheentiretriangle. On theotherhand,ifk isnotequaltothe altitudeofthe 7 equilateraltrianglethenthelocusofpointsisempty. 1 Sincethedistancefunctionislinearwithtwovariableandbecauseofsquaringthe : v distances,thelocusofpointsinthesecondquestion,ifnotempty,isaquadraticcurve. i Inourcase,weshallseethatthisquadraticcurveisalwaysanellipse. Thisfactwillbe X thebasisofanewcharacterizationofellipses. r We start first with the locus of points which have constant sum of distances to a eachofthesidesofagiventriangleandconsiderseparatelythecasesofisoscelesand scalene triangles. Then, we turn to the locus of points which have constant sum of squareddistancestoeachofthesidesofagiventriangle. Weprovethemaintheorem whichgivesacharacterizationofellipsesandconcludebydiscussingminimalsumof squareddistances. Constant sum of distances Samelson[6,p. 225]gaveaproofofViviani’stheoremthatusesvectorsandChen& Liang[3,p. 390-391]usedthisvectormethodtoproveaconverse: ifinsideatriangle 1 thereisacircularregioninwhichthesumofthedistancesfromthesidesisconstant, thenthe triangleisequilateral. In[2], thisconverseisgeneralizedintheformoftwo theoremsthatwewilluseinaddressingQuestion1. Tostatethesetheorems,weneed thefollowingterminology:Let beapolygonconsistingofbothboundaryandinterior points.DefinethedistancesumPfunction : R,whereforeachpointP the V P → ∈P value (P)isdefinedasthesumofthedistancesfromP tothesidesof . V P Theorem1 Any triangle can be divided into parallel line segments on which is V constant.Furthermore,thefollowingconditionsareequivalent: isconstantonthetriangle∆. • V There are three non-collinearpoints, inside the triangle, at which takes the • V samevalue. ∆isequilateral. • Theorem2 (a)Anyconvexpolygon canbedividedintoparallellinesegments,on P which isconstant. V (b)If takesequalvaluesatthreenon-collinearpoints,insideaconvexpolygon, V then isconstanton . V P The discussion in [2, p. 207-210]laysouta connectionbetweenlinear program- ming and Theorems 1 and 2. Theorem 1 is proved explicitly by defining a suitable linear programmingproblem and Theorem 2 is provedby means of analytic geome- try,wherethedistancesumfunction iscomputeddirectlyandshowntobelinearin V twovariables. WeshallapplythesetheoremstofindthelociT (∆)forisoscelesand k scalenetriangles∆. Isoscelestriangle For isosceles triangles we exploit their reflection symmetry to find directly the line segmentsonwhich isconstant,andforscalenetrianglesweapplyanyoftheabove V theorems to show that is constant on certain parallel line segments. To find the V directionoftheselinesegmentswecomputeexplicitlytheequationof . Theideais V illustratedthroughanexample. Since an isosceles trianglehas a reflectionsymmetryacrossthe altitude, we con- cludethat; ifthe sumofdistancesofpointP fromthesidesofthetriangleis k, then thereflectionpointP acrossthealtitudesatisfiesthesameproperty.Forsuchtriangles ′ wehavethefollowingproposition. Proposition1 If ∆ is a non-equilateralisosceles triangle and k ranges between the lengths of the smallest and the largest altitudes of the triangle, then T (∆) is a line k segment,whoseendpointsareontheboundaryofthetriangle,paralleltothebase. Proof. In Fig. 1, if the line segment DE is parallel to the base BC then, when P movesalongDE,thelengtharemainsconstantandb+c=DPsinα+PEsinα= 2 DEsinα,whichisalsoconstant.Hence,a+b+c=kisconstantonthesegmentDE. ByTheorem1, therearenootherpointsin∆withdistancesumk unlessthetriangle isequilateral. IfaapproacheszerothenthelengthofDE approachesthelengthofthebaseBC, andk = a+DEsinαapproachesthelengthofthealtitudesfromB (orC). Onthe otherhand, if the lengthof DE approacheszero thenk approachesthe length of the altitudefromA. Hence, T (∆) is definedwheneverk rangesbetweenthe lengthsof k thesmallestandthelargestaltitudesofthetriangle. Figure1: Thelocusofpointsisalinesegmentparalleltothebase. Scalene triangle Similarly,by Theorem1, the locusof pointsT (∆) fora scalene triangle∆ isa line k segment,providedkrangesbetweenthelengthsofthesmallestandthelargestaltitudes of the triangle. Otherwise, T (∆) will be empty. Indeed, the connectionwith linear k programmingallows us to deduce the result. The convex polygonis taken to be the feasibleregion,andthedistancesumfunction correspondstotheobjectivefunction. V The parallel line segments, on which is constant, correspondto the isoprofitlines. V The mathematical theory behind linear programming states that an optimal solution to anyproblemwill lie at a cornerpointof the feasible region. If the feasible region is bounded, then both the maximum and the minimum are attained at corner points. Now,thedistancesumfunction isalinearcontinuousfunctionintwovariables.The V valuesof attheverticesofthefeasibleregion,whichisthetriangle∆,areexactlythe V lengthsofthealtitudes. Moreover,thisfunctionattainsitsminimumanditsmaximum at the vertices of the triangle, and ranges continuously between its extremal values. Hence,ittakesoneveryvaluebetweenitsminimumanditsmaximum. Therefore, 3 wehavethefollowingproposition. Proposition2 If∆isascalenetriangleandkrangesbetweenthelengthsofthesmall- estandthe largestaltitudesofthe triangle, thenT (∆) isa line segment,whose end k pointsareontheboundaryofthetriangle. The question is: How can we determinethis segmentfor a generaltriangle? We shallillustratethemethodbythefollowingexample. Giventheverticesofatriangle, we firstcomputethe equationsofthe sidesthenwe find thedistancesfroma general point(x,y) inside the triangle to each of the sides. In this way we obtain the corre- sponding distance sum function . Taking = c, we get a family of parallel lines V V which, for certain values of the constantc, intersect the given triangle in the desired linesegments. Example1 Let ∆ be the right angled triangle with vertices (0,0),(0,3) and (4,0), respectively(seeFig.2).Iftheconstantsumofdistancesfromthesidesisk,2.4 k ≤ ≤ 4,thenthelocusisalinesegmentinsidethetriangleparalleltotheline2x+y =0. In Fig. 2, T2.4(∆) = A ,T2.8(∆) = DG,T3.2(∆) = EH,T3.6(∆) = FI and { } T4(∆) = C .Notethatattheextremalvaluesofk,thesegmentsshrinktoacorner { } pointofthetriangle∆. Indeed,thesmallestaltitudeofthetriangleis2.4andthelargestaltitudeis4.Hence, by the previous proposition, the locus of points is a line segment. To find this line segment,wecomputethedistancesumfunction .Theequationofthehypotenuseis V 3x+4y =12.Hence, 3x+4y 12 2 1 12 =x+y − = x+ y+ . V − 5 5 5 5 Therefore,thelines =careparalleltotheline2x+y =0andtheresultfollows. V NotethattheproofsofTheorems1and2followthesameline. Constant sum of squares of distances Motivatedbythepreviousresults,wedealwiththesecondquestionoffindingthelocus ofpointswhichhaveaconstantsumofsquaresofdistancesfromthesidesofagiven triangle. ReferringtoExample1,DE2+DF2+DG2 = 5(thenumber5ischosen arbitrary)impliesthefollowingequationofaquadraticcurve; 2 3x+4y 12 x2+y2+ − =5. (cid:18) 5 (cid:19) Simplifying,onegetstheequivalentequation 34x2+41y2+24xy 72x 96y+19=0. − − ThisisexactlytheequationoftheellipseshowninFig. 3. 4 Figure2: T (∆),2.4 k 4,arelinesegmentsinsidethetriangleparalleltotheline k ≤ ≤ 2x+y =0. Figure3:EachpointDontheellipsesatisfiesDE2+DF2+DG2 =5 5 Anew characterization ofthe ellipse Inviewofthepreviousexamplewemayprovethefollowingtheorem,whichstatesthat amongallquadraticcurvestheellipsecanbecharacterizedasthelocusofpointsthat haveaconstantsumofsquaresofdistancesfromthesidesofanappropriatetriangle. Theorem3 The locus S (∆ABC) of points that have a constant sum of squares of k distancesfromthesidesofanappropriatetriangleABC isanellipse(andviceversa). Proof.Weshallprovethefollowingtwoclaims: (a) Given a triangle, the locus of pointswhich have a constantsum of squaresof distancesfromthesidesisanellipse. Theseloci,fordifferentvaluesoftheconstant, arehomotheticellipseswithrespecttotheircommoncenter(theircorrespondingaxes areproportionalwiththesamefactor). (b) Given an ellipse, there is a triangle for which the sum of the squares of the distancesfromthesides,forallpointsontheellipse,isconstant. Usinganalyticgeometry,wechooseforpart(a)thecoordinatesystemsuchthatthe verticesofthe trianglelie ontheaxes. Supposethecoordinatesoftheverticesofthe triangle are A(0,a),B( b,0),C(c,0), where a,b,c > 0 (see Fig. 4). Let (x,y) be − anypointintheplaneandletd1,d2,d3 bethedistancesof(x,y)fromthesidesofthe triangleABC. Itfollowsthat 3 (ax+cy ac)2 (ax by+ab)2 d2 = − + − +y2. i a2+c2 a2+b2 Xi=1 3 Hence, d2 =k(constant)ifandonlyifthepoint(x,y)liesonthequadraticcurve: i iP=1 (ax+cy ac)2 (ax by+ab)2 − + − +y2 =k. (1) a2+c2 a2+b2 Ingeneral,aquadraticequationintwovariables, x2+ xy+ y2+ x+ y+ =0, (2) A B C D E F representsanellipseprovidedthediscriminantδ = 2 4 <0isnegative. B − AC Toproveourclaim,notethatfromequation(1)wehave: a2 a2 2ac 2ab c2 b2 = + , = , = + +1 (3) A p q B p − q C p q where,p=a2+c2andq =a2+b2.Therefore, a2 δ = 2 4 = 4 b2+2bc+c2+p+q , B − AC − pq (cid:0) (cid:1) andtheresultfollows. Now,weprovepart(b).Applyingrotationortranslationoftheaxeswemayassume that the ellipse has a canonicalform x2 + y2 = 1, α β > 0. If we find positive α2 β2 ≥ 6 real numbers a,b with α2 = a2 + 3b2,β2 = 2a2, then the isosceles triangle with vertices A(0,a l),B ( b, l),C (b, l), gives the required property in part (b), ′ ′ ′ wherel = 2ab2−. − − − a2+3b2 Indeed,becauseofthesymmetryoftheellipse,wechoosefirstanisoscelestriangle withverticesA(0,a),B( b,0),C(b,0)andcomputethesumofthesquareddistances − from its sides. Substituting c = b in equation (1), gives the equation of the locus S (∆ABC)as k (ax+by ab)2 (ax by+ab)2 − + − +y2 =k. a2+b2 a2+b2 Equivalently,wegetatranslationofacanonicalellipse: x2 + (y− a22+ab32b2)2 = (a2+b2)k−2a2b2 + 2b4 . (4) a2+3b2 2a2 2a2(a2+3b2) (a2+3b2)2 Thus,itisenoughtotake (a2+b2)k 2a2b2 2b4 − + =1, 2a2(a2+3b2) (a2+3b2)2 andtherefore, 2a2(a4+7a2b2+10b4) k = . (5) (a2+b2)(a2+3b2) Translating downwardby l = 2ab2 , we get that the ellipse x2 + y2 = 1 a2+3b2 a2+3b2 2a2 is the locus of points, S (∆AB C ), which have a constant sum of squares of dis- k ′ ′ ′ tancesfromthesidesofthetrianglewithverticesA(0,a l),B ( b, l),C (b, l). ′ ′ ′ − − − − Moreover,thisconstantisgivenbyequation(5). Figure4:Thelocusisanellipse 7 Table1includestwoexamplesthatdemonstrateTheorem3. a b α2 =a2+3b2 β2 =2a2 Ellipse k Figure 1 1 4 2 x2 + y2 =1 9 5 4 2 2 √3 1 6 6 x2+y2 =6 10 6 Table1:Examples Noticethat,thoughagiventriangleandagivenconstantkyieldatmostoneellipse, the same ellipse can be obtainedusing differenttriangles. This can be easily seen in Fig. 5. By the above computations, the ellipse x2 + y2 = 1 is the locus of points 4 2 S4.5(∆), where ∆ is the triangle with vertices A′ = (0,0.5),B′ = ( 1, 0.5) and − − C =(1, 0.5).Ifwereflectthewholefigureacrossthex axis,thenthesameellipse ′ x42 +y22 =−1willbethelocusofpointsS4.5(∆),where∆−isthereflectionof∆across thex axiswithvertices:(0, 0.5),( 1,0.5)and(1,0.5). − − − e e Noticealsothat,inthesecondexample,thelocusofpointsisacircle. Ingeneral, thelocusofpointsisacircleexactlywhen,inequation(2), = and =0. A C B Equivalently,from(3)wehave; a2 a2 c2 b2 2ac 2ab + = + +1and =0. (6) p q p q p − q Substitutingthevaluesofpandqandsimplifyingweget; 2ac 2ab =0 (a2 bc)(c b)=0. p − q ⇔ − − Consequently,twocaseshavetobeconsidered: First, a2 = bc,in whichcase the triangle∆ABC isrightangled. Thiscase does notoccur,sincetheconditionsin(6)leadtoacontradictionasfollows: 2ac 2ab =0 p − q implies c = b or equivalently bc = b2. Since, a2 = bc we get a2 = b2. Hence, p q p q p q thefirstconditionin(6)simplifiesinto a2 = c2 +1.Thisequationtogetherwiththe q p relationsa2 =bcand c = b,yieldacontradiction. p q Second, c = b, in which case the triangle ∆ABC is isosceles. In this case, we havep = q. Substitutingin the firstconditionof (6) we get a2 +3b2 = 2a2, which isequivalenttoa = √3b.Hence,theverticesofthetriangleareA(0,√3b),B( b,0) − andC(b,0). Thisimpliesthatthetriangleisequilateral. Therefore,wehavethefollowingresult. Conclusion1 ThelocusS (∆)ofpointsthathaveaconstantsumofsquaresofdis- k tancesfrom thesides ofa giventriangle∆ isa circle ifandonlyif the triangle∆ is equilateral. 8 Figure5:Thelocusisanellipsewithk =4.5 Figure6:Thelocusisacirclewithk=10 9 Minimalsum ofsquared distances Anotherinterestingquestionistofindtheminimalsumofsquareddistances,fromthe sides of a given triangle. For the isosceles triangle with vertices A(0,a),B( b,0) − andC(b,0),equation(4)indicatesthat,astherighthandsideapproaches0,theellipse degeneratestoonepoint:(0, 2ab2 ).Thus,thelocusofpointsisdefinedexactlywhen a2+3b2 (a2+b2)k 2a2b2 2b4 − + 0. 2a2(a2+3b2) (a2+3b2)2 ≥ Equivalently, 2a2b2 k . ≥ a2+3b2 Thereforethefollowingconsequenceholds. Conclusion2 Fortheisoscelestrianglewith verticesA(0,a),B( b,0)andC(b,0), the minimal sum of squared distances from the sides is 2a2b2 a−ttained at the point a2+3b2 (0, 2ab2 ),insidethetriangle. a2+3b2 Whena2 = 3b2 thenthetriangleisequilateralwithverticesA(0,√3b),B( b,0) and C(b,0). In this case, the minimal sum of squared distances is b2 attained−at the point(0,√3b)whichisexactlytheincenteroftheequilateraltriangle.InFig. 7,b=1 3 and the loci of points are circles which degenerate to the incenter of the equilateral triangleaskapproaches1. Concluding remarks Other related results are the following: Kawasaki [4, p. 213], with a proof without words, used only rotations to establish Viviani’s theorem. Polster [5], considered a naturaltwisttoabeautifulone-glanceproofofViviani’stheoremanditsimplications forgeneraltriangles. The restrictionof the locus, in the first question, to subsets of the closed triangle is intended to avoid the use of the signed distances. These signed distances, when considered,allowsustosearchlociofpointsoutsidethetrianglefor”large”valuesof theconstantk.Thereaderisencouragedtodosomeexamples. Theorem2,allowsustoaddressQuestion1toanyconvexpolygonintheplane. The questionaboutloci of points, with constantsum of squaresof distances, can begeneralizedtoanypolygonoranysetoflinesintheplane. Inthiscase,oneshould distinguishwhetherallthelinesareparallelornot. Thereaderisencouragedtowork outsomeexamplesusingGeoGebra. Conclusion 2 can be restated for generaltriangles, by a changeof the coordinate system. This demands familiarity with the following theorem (which is beyond our discussion): Everyrealquadraticformq = XTAX withsymmetricmatrixAcanbe reducedbyanorthogonaltransformationtoacanonicalform. 10