ebook img

Localized Recombining Plasma in G166.0+4.3: A Supernova Remnant with an Unusual Morphology PDF

0.95 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Localized Recombining Plasma in G166.0+4.3: A Supernova Remnant with an Unusual Morphology

Publ.Astron.Soc.Japan(2014)00(0),1–8 1 doi:10.1093/pasj/xxx000 Localized Recombining Plasma in G166.0+4.3: A Supernova Remnant with an Unusual Morphology 7 1 0 Hideaki MATSUMURA1, Hiroyuki UCHIDA 1, Takaaki TANAKA 1, Takeshi Go 2 TSURU 1, Masayoshi NOBUKAWA 2, Kumiko Kawabata NOBUKAWA 3 and n Makoto ITOU 1 a J 1DepartmentofPhysics,FacultyofScience,KyotoUniversity,KitashirakawaOiwake-cho, 6 Sakyo-ku,Kyoto-shi,Kyoto606-8502,Japan 1 2Science,CurriculumandInstruction,FacultyofEducation,NaraUniversityofEducation, ] Takabatake-cho,Nara-shi,Nara630-8528,Japan E 3DepartmentofPhysics,NaraWomen’sUniversity,Kitauoyanishimachi,Nara630-8506, H Japan . h p Received;Accepted - o r Abstract t s We observed the Galactic mixed-morphology supernova remnant G166.0+4.3 with Suzaku. a [ The X-ray spectrum in the western part of the remnant is well represented by a one- component ionizing plasma model. The spectrum in the northeastern region can be ex- 1 v plained by two components. One is the Fe-rich component with the electron temperature 64 kTe = 0.87+−00..0023 keV. The other is the recombining plasma component of lighter elements 1 withkTe=0.46±0.03keV,theinitial temperaturekTinit=3keV(fixed)andtheionization pa- 4 rameter net=(6.1+−00..54)×1011 cm−3 s. As the formation process of the recombining plasma, 0 two scenarios, the rarefaction and thermal conduction, areconsidered. The former would not . 1 be favored since we found the recombining plasma only in the northeastern region whereas 0 thelatterwouldexplaintheoriginoftheRP.Inthelatterscenario,anRPisanticipatedinapart 7 1 of theremnant where blast wavesare in contactwith cooldense gas. Theemission measure : suggestshigher ambient gas densityin thenortheasternregion. Themorphology oftheradio v i shellandaGeVgamma-rayemissionalsosuggestamolecularcloudintheregion. X Keywords:X-rays: individual,G166.0+4.3,Recombiningplasma r a 1 Introduction theX-raymorphology. MostMMSNRsareactuallyassociated withmolecularcloudsasindicatedbyCOlineemissionsorOH Mixed-morphology supernova remnants (MM SNRs) have (1720MHz)masers(e.g.,Lazendic&Slane2006). Theyalso center-filled thermal X-ray emissions in a synchrotron radio exhibit GeV/TeV gamma-ray emissions which suggest shell- shell (Rho & Petre 1998). Although the formation mecha- cloudinteractionssincethoseSNRscanemitluminousgamma nism of the non-standard morphology has not been fully un- raysthroughπ0 decays(e.g.,Ackermannetal.2013;Albertet derstood, there are two proposed scenarios. One is the evap- al.2007). orating cloudlet scenario (White & Long 1991), and the other is the thermal conduction scenario (Cox et al. 1999; Shelton IntheASCAobservationoftheMMSNRIC443,Kawasaki et al. 1999). Ineither scenario, interactions between the blast et al. (2002) measured ionization temperatures (T ) based on z waveanddensegasplayanimportantroleintheformationof theH-liketoHe-likeKαintensityratiosofSiandS,andcom- (cid:13)c 2014.AstronomicalSocietyofJapan. 2 PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 paredthemwithelectrontemperatures(T ).TheyfoundthatT 12keV.Weassume5kpcasthedistancetotheremnantinthis e z is significantly higher than T , and suggested that the plasma paper. e is overionized. In the observations of IC 443 (Yamaguchi et al. 2009) and W49B (Ozawa et al. 2009) with Suzaku, they 2 Observationsand data reduction discovered radiative recombining continua (RRC), which pro- vide clear evidence that the plasmas are in an extremely re- We performed Suzaku observations of G166.0+4.3. Table 1 combiningstate. SubsequentSuzakuobservations revealedre- summarizes the observation log. In this analysis, we used combining plasmas (RPs) in other MM SNRs in the Galaxy data from the X-ray Imaging Spectrometer (XIS: Koyama et (e.g., G359.1−0.5: Ohnishi et al. 2011; W28: Sawada & al. 2007) installed on the focal planes of the X-ray telescopes Koyama2012;W44:Uchidaetal.2012)aswellasintheLarge (XRT: Serlemitsos et al. 2007). XIS2 and a part of XIS0 are MagellanicCloud(N49:Uchida,Koyama,Yamaguchi2015). notusedinwhatfollows. Theformerhasnotbeenfunctioning Twoscenariosaremainlyconsideredfortheformationpro- since2006 November. Thelatter was turned offin 2009 June cessoftheRPs. Oneistherarefactionscenario(Itoh&Masai (SuzakuXISdocuments1,2). 1989). If a supernova explodes in a dense circumstellar mat- We reduced the data using the HEADAS software version ter(CSM)aroundthemassiveprogenitor, ejectaandtheCSM 6.19.Weusedthecalibrationdatabasereleasedin2015October areshock-heatedandquicklyionizedbecauseofthehighden- fordataprocessing. Thetotalexposuretimeofthefiveobser- sity. When the shock breaks the CSM out to a lower density vations is ∼226 ks after the standard data screening. In the interstellar medium (ISM),T is decreased by adiabatic cool- processing ofthe XISdata, weremovedcumulative flickering e ing. Kawasaki et al. (2002) proposed the other scenario, the pixelsbyreferringtothenoisypixelmaps3providedbytheXIS thermal conduction scenario. If an SNR shock is interacting team. Wealsodiscardedpixelsadjacenttotheflickeringpixels withamolecularcloud,thermalconductionoccursbetweenthe (pixelqualityB14=1). NonX-raybackgrounds(NXBs)were SNRplasmaandthecloud,and,therefore,T drops. Sincethe estimatedbyxisnxbgen(Tawaetal.2008). Theredistribution e recombination timescalesofionsaregenerallylongerthanthe matrix files and the ancillary response files were produced by conductiontimescales,T cannotfollowthedecreaseofT ,and xisrmfgen and xissimarfgen (Ishisaki et al. 2007), respec- z e RPscanberealized. tively. G166.0+4.3isaGalacticSNRwhoseradioshellhasalarge bipolar structure in the west with a smaller semicircle shell 3 Analysis in the east (Sharpless 1959; Landecker et al. 1982; Pineault 3.1 Image et al. 1987). Landecker et al. (1982) estimated the distance to G166.0+4.3 as 5.0±0.5 kpc by using the Σ-D-z (surface Figure 1 shows a mosaic image of G166.0+4.3 in the energy brightness-diameter-distanceabovetheGalacticplane)relation- band of 0.5–2.0 keV. We subtracted the NXB from the image ship. Pineaultetal.(1987)suggestedthatthegasdensityinthe andcorrecteditforthevignetting effectoftheXRT.Contours eastishigherthanthatinthewestbecauseoftheunusualmor- area325MHzradioimagefromtheWesterbordNorthernSky phology of the radio shell. G166.0+4.3 was observed in the Survey(WENSS). X-raybandwithROSAT(Burrows&Guo1994),ASCA(Guo & Burrows 1997) and XMM-Newton (Bocchino et al. 2009). 3.2 Backgroundsubtraction Burrows&Guo(1994)foundtheX-raymorphologyisdistinct Forbackgroundestimation,weusedSuzakuobservationaldata fromtheradio morphology and reproduced the spectrum with ofIRAS05262+4432,whichislocatedat(l,b)=(165.◦1,5.◦7). collisionalionizationequilibrium(CIE:T =T )models.They z e estimated the age of the remnant to be ∼2.4×104 yr by ap- TheobservationlogisshowninTable1. Weextractedaspec- trumfromasource-freeregion.Inordertomodelthespectrum, plying the evaporating cloudlet model (White & Long 1991) weadoptedamodelbyMasuietal.(2009). Theyobservedthe whentheyassumetheestimateddistanceof5kpc.Bocchinoet direction (l,b) = (230◦, 0◦) with Suzaku in order to study the al.(2009) classified G166.0+4.3 asanMMSNRand reported softX-rayemissionfromtheGalactic disk. Their modelcon- that the spectra can be reproduced by an ionizing plasma (IP: sistsoffourcomponents: thecosmicX-raybackground(CXB), T <T )model. z e the local hot bubble (LHB), and two thermal components for GasenvironmentofG166.0+4.3isclearlydifferentbetween theGalactichalo(GHcoldandGHhot). theeastandthewest,accordingtothemorphologyoftheradio shell. It is one of the best sources to study plasma evolution 1http://www.astro.isas.ac.jp/suzaku/doc/suzakumemo/suzakumemo-2007- dependingontheenvironment. Inthispaper,wereportonob- 08.pdf 2http://www.astro.isas.ac.jp/suzaku/doc/suzakumemo/suzakumemo-2010- servationalresultsofG166.0+4.3withSuzaku,whichhashigh 01.pdf sensitivityandhighenergyresolutionintheenergybandof0.3– 3https://heasarc.gsfc.nasa.gov/docs/suzaku/analysis/xisnxbnew.html PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 3 Table1.Observationlog. Target Obs.ID Obs.date (R.A.,Dec.) EffectiveExposure G166.0+4.3NE 509022010 2014-Sep-19 (5h27m07.s7,42◦58′52.′′2) 61ks G166.0+4.3NE 509022020 2014-Sep-22 (5h27m07.s7,42◦58′52.′′2) 61ks G166.0+4.3NW 509023010 2014-Sep-20 (5h25m46.s8,42◦54′01.′′7) 42ks G166.0+4.3SE 509024010 2014-Sep-21 (5h26m41.s2,42◦39′06.′′2) 34ks G166.0+4.3SE 509024020 2015-Mar-13 (5h26m41.s2,42◦39′06.′′2) 27ks IRAS05262+4432(Background) 703019010 2008-Sep-14 (5h29m56.s0,44◦34′39.′′2) 82ks Right ascension 5:28:00.0 5:26:00.0 5:24:00.0 0 00. 0.1 0: 3 3: 4 V−1 0.01 n NE Counts s ke−1 10−3 GHcold CXB GHhot o 0 LHB i 0. eclinat 43:00:0 10−244 D W χ 0 −2 −4 0.5 1 2 5 10 0 Energy (keV) 0. 0 30: Fig.2.XIS0+3(black) and XIS1(red) spectra takenfrom the source-free 2: regionoftheIRAS05262+4432datawiththebest-fitmodel.Theblue,green, 4 magenta andorange linesrepresent theCXB,LHB,GHcold and GHhot models,respectively. Thebottompanelshowsthedataresidualsfromthe best-fitmodel. 9.8e-4 3.9e-3 1.6e-2 6.3e-2 2.5e-1 1.0 Fig.1.XISimageofG166.0+4.3inthe0.5–2.0keVbandaftertheNXBsub- tractionandthecorrectionofthevignettingeffect. Thecoordinatesreferto epochJ2000.0. TheX-raycount rateisnormalized sothatthepeakbe- comesunity. Weoverlaidcontours ofthe325MHzradioimagefromthe WENSS. Table2.Best-fitmodelparametersofthe backgroundspectra We fit the background spectrum with the model after the Component Parameter(unit) Value NXB subtraction using XSPEC version 12.9.0. We fixed the CXB NH(1021cm−2) 3.8(fixed) Photonindex 1.4(fixed) electron temperatures of the LHB, GHcold and GHhot at the Normalization∗ 10.7±0.4 values byMasuietal.(2009). Theabsorption columndensity (NH) of the CXB was fixed at 3.8×1021 cm−2, the Galactic LHB kNToerm(kaleiVza)tion† 103.1.405±(fi3x.2ed) valueinthelineofsighttowardIRAS05262+4432 (Dickey& GHcold kTe(keV) 0.658(fixed) Lockman 1990; Kalberla et al. 2005). The normalizations of Normalization† 2.1±0.2 allthecomponentswereallowedtovary. Figure2andTable2 GHhot kTe(keV) 1.50(fixed) showthefittingresultandthebest-fitparameters,respectively. Normalization† 3.1±0.5 χ2(d.o.f.) 301.9(234) ∗Theunitisphotonss−1cm−2keV−1sr−1@1keV. 3.3 SNRspectra †Theemissionmeasureintegratedoverthelineofsight,i.e., (1/4π)RnenHdlinunitsof1014cm−5sr−1. Considering the morphology of the radio shell, we extracted spectrafromthenortheastandwestregions(namedNEandW) indicatedwiththewhitesolidlinesinFigure1.Figure3shows 4 PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 (Figure4(ne-i)). Thesespectralfeatures,ifconfirmed,provide evidencethattheplasmaisinarecombination-dominant state. Si 1 Wetriedaone-component RPmodel. However, asatisfactory S fitwasnotobtained. Ne Counts s keV−1−1 0.010.1 Fe NLi LMg >cfioxme1Fd.p6otoroknateehdVneettbwIaPeihlseoet-drrfieRitnwvPvaeemlsufteooigdufaeontlrdisoW.nthT,,eNhweleHaarr=gbeess0otrr.r8iepcs×ttiiedo1dun0at2hcl1soe,lceuamnmne−dnrg2td,yreiwebndhaseniotrdyenaetioss- kT andn tareleftfree.ThekT isafreeparameterforthe 10−3 RPemodel,ewhereas it is fixed atin0it.01 keV for the IP model. Theabundances of Siand S arefreeparameters, and those of 10−40.5 1 2 5 10 Ar and Ca are linked to S. The residuals were not improved Energy (keV) withtheIPmodel(Figure4(ne-ii)andTable3). Ontheother Fig.3.XIS0+3spectraofW(black)andNE(blue). Theverticalsolidand hand, we successfully fitted the spectrum with the RP model dashedblacklinesshowthecenterenergiesoftheKlinesfromHe-likeand (Figure4(ne-iii)andTable3). H-likeions,respectively. ThearrowsindicatetheenergybandswithFe-L andNi-Llinecomplexes. We extrapolated the above RP model down to 0.5 keV. Figure 4 (ne-iv) shows the model and the full-band spectrum in the energy band of 0.5–10.0 keV. The spectral structure in XIS0+3spectraofWandNEaftertheNXBsubtraction. One the 0.7–1.1 keV band cannot be reproduced. With the elec- canclearlyseeFe-LandNi-Llinecomplexes,andSi-KandS- Klines.TheFe-LandNi-Llinecomplexesaremoreprominent tron temperature kTe =0.37 keV, the model predicts a peak inWthanthoseinNE. energyoftheFeandNiLlinecomplexesat∼0.8keV,which is significantly lower than the observed value of ∼0.95 keV. Wefittedthespectrawiththemodelconsisting oftheSNR Figure 5 shows the NE spectrum of XIS0+3 and the plasma componentandthebackground(§3.2). Theoverallnormaliza- model in the energy band of 0.5–1.2 keV. The model consists tionofthebackgroundcomponentwastreatedasafreeparame- ter.TheabsorptioncolumndensityoftheCXBcomponentwas onlyoftheFeandNicomponentswithNH=1.7×1021cm−2, fixedat3.6×1021 cm−2 whichistheGalacticvalueintheline kTinit = 3.0 keV and net = 6.0×1011 cm−3s. The elec- tron temperatures are 0.40 keV and 0.85 keV in Figures 5 ofsighttowardG166.0+4.3. (a) and (b), respectively. The dominant emission lines of the We applied a one-component IP model to the W spectrum Fe and Ni components are FeXVII 2p5 3s1→2p6 (0.725 keV usingtheVVRNEImodelintheXSPECpackage,wheretheini- and 0.739 keV) and FeXVII 2p5 3d1→2p6 (0.812 keV and tialtemperature(kT )isfixedat0.01keVwhereastheelec- init trontemperature,ionizationparameter(n t)andnormalization 0.826 keV) with kTe = 0.40 keV, and FeXIX 2p3 3s1→2p4 e (0.822 keV), FeXVIII 2p4 3d1→2p5 (0.873 keV), FeXX 2p2 arefreeparameters. WeusedtheWisconsin absorptionmodel 3d1→2p3 (0.965 keV) and FeXXI 2p1 3d1→2p2 (1.009 keV) (Morrison&McCammon1983) fortheabsorption whosecol- with kT = 0.85 keV. The comparison between the data and umndensityisafreeparameter.TheabundancesofO,Ne,Mg, e themodelsindicatesthattheelectrontemperatureoftheFeand Si, S, and Fe are also free parameters. The Ar and Ca abun- Niplasmashouldbe∼0.85keVinordertoreproducetheob- dancesarelinkedtoS,andNiislinkedtoFe. Theabundances served structure. On the other hand, the Si and S plasma de- of the other elements are fixed to the solar values (Anders & mandslowerkT aswesawinthe(ne-iii)fit. Grevesse1989). TheenergybandaroundtheneutralSiK-edge e (1.73–1.78 keV) is ignored because of the known calibration The result indicates that the plasma has different kT be- e uncertainty. The fitting left large residuals around 0.82 keV tween Fe (+Ni) and the other elements. Kamitsukasa et al. and1.23 keV duetothe lackofFe-Llines inthemodel (e.g., (2016)decomposedtheejectaofSNRG272.2−3.2intocompo- Yamaguchietal.2011). Therefore,weaddedtwonarrowlines nentswithdifferentelements,consideringthateachelementhas at0.82keVand1.23keV.TheresultsareshowninFigure4(w- differentradialdistributions. Followingtheiridea,weadopted i)andTable3. Wefoundthatthespectrumiswellreproduced atwo-componentVVRNEImodel: oneforFeandNi,andthe byaone-componentIPmodelwiththeelectrontemperatureof other forlighter elements. Thespectracanbewell fittedwith 0.83keV. the model comprising a CIE for Fe and Ni and an RP for the We applied the same IP model as W to the NE spectrum. other elements. Figure 4 (ne-v) shows the spectrum with the Significant residuals are found at ∼2.0 keV and ∼ 2.6 keV best-fitmodel. Although wetriedIPandRPfortheFeandNi which correspond to Si Lyα (2.0 keV) and the edge of the component,theionizationparametern tcannotbeconstrained e RRCofHe-likeSi(2.67keV)+SLyα(2.63keV),respectively well.Therefore,wehereassumedtheCIEmodelforsimplicity. PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 5 (w-i) (ne-i) 1 IP + 2gauss model 1 IP + 2gauss model (0.5-10.0 keV) (0.5-10.0 keV) V−1 0.1 V−1 0.1 Counts s ke−1 01.00−13 Counts s ke−1 01.00−13 10−4 10−4 4 4 2 2 χ 0 χ 0 −2 −2 −4 −4 0.5 1 2 5 10 0.5 1 2 5 10 Energy (keV) Energy (keV) (ne-ii) (ne-iii) 1 IP model (1.6-10 keV) 1 RP model (1.6-10 keV) V−1 0.1 V−1 0.1 Counts s ke−1 01.00−13 Counts s ke−1 01.00−13 10−4 10−4 4 4 2 2 χ 0 χ 0 −2 −2 −4 −4 0.5 1 1.6 2 5 10 0.5 1 1.6 2 5 10 Energy (keV) Energy (keV) (ne-iv) (ne-v) 1 RP + 2gauss model 1 CIE (only Fe & Ni) + RP (other elements) + 2gauss model (0.5-10.0 keV) (0.5-10 keV) Counts s keV−1−1 01.000.−113 Counts s keV−1−1 01.000.−113 10−4 10−4 4 4 2 2 χ 0 χ 0 −2 −2 −4 −4 0.5 1 2 5 10 0.5 1 2 5 10 Energy (keV) Energy (keV) Fig.4.XIS0+3(black)andXIS1(red)spectraofWorNE.Eachspectrumisfittedwiththeplasmamodel(solidlines)andthebackgroundmodel(dottedlines). 6 PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 Table3.Fitparametersofsourceregions. Modelfunction Parameter(unit) (w-i) (ne-i) (ne-ii) (ne-iii) (ne-v) Absorption NH(1021cm−2) 0.8±0.1 0.3±0.1 0.8(fixed) 0.8(fixed) 1.7±0.1 VVRNEI1 kTe(keV) 0.83±0.01 0.90+−00..0012 1.36+−00..5217 0.37±0.04 0.46±0.03 kTinit(keV) 0.01(fixed) 0.01(fixed) 0.01(fixed) ≥2.98 3.0(fixed) H(solar) 1(fixed) 1(fixed) 1(fixed) 1(fixed) 1(fixed) He(solar) 1(fixed) 1(fixed) 1(fixed) 1(fixed) 1(fixed) C(solar) 1(fixed) 1(fixed) 1(fixed) 1(fixed) 1(fixed) O(solar) 0.4+0.2 0.2+0.2 1(fixed) 1(fixed) 0.02+0.03 −0.1 −0.1 −0.01 Ne(solar) 0.6+0.2 0.6+0.2 1(fixed) 1(fixed) 0.4±0.1 −0.1 −0.1 Mg(solar) 1.2±0.2 0.6±0.1 1(fixed) 1(fixed) 0.6±0.1 Si(solar) 0.7+0.1 0.6±0.1 1.4+0.3 2.3±0.3 1.0±0.1 −0.2 −0.1 S=Ar=Ca(solar) 1.2±0.3 1.2±0.2 1.8±0.4 3.3+0.7 1.5±0.2 −0.6 Fe=Ni(solar) 1.2±0.2 0.4±0.1 1(fixed) 1(fixed) ————- net(1011cm−3s) 4.0+−00..75 3.1±0.5 1.6+−10..77 6.2±0.6 6.1+−00..54 VEM(1057cm−3)† 2.7±0.2 2.9+0.2 1.2+0.3 6.6+1.6 10.3+0.8 −0.3 −0.2 −1.3 −1.0 VVRNEI2 kTe(keV) ————- ————- ————- ————- 0.87+−00..0023 Fe=Ni(solar) ————- ————- ————- ————- 0.14±0.01 VEM(1057cm−3)† ————- ————- ————- ————- =VVRNEI1 Gaussian Centroid(keV) 0.82(fixed) 0.82(fixed) ————- ————- 0.82(fixed) Normalization‡ 4.6+1.3 2.1+0.8 ————- ————- 6.7+1.5 −0.7 −0.7 −1.3 Gaussian Centroid(keV) 1.23(fixed) 1.23(fixed) ————- ————- 1.23(fixed) Normalization‡ 3.4+1.3 0.8±0.1 ————- ————- 0.7±0.2 −0.2 χ2(d.o.f.) 339.2(247) 443.9(251) 232.7(150) 172.1(150) 347.6(250) †VolumeemissionmeasureVEM=RnenHdV ,wherene,nH,andV aretheelectronandhydrogendensities,andtheemittingvolume, respectively. ‡Theunitisphotonss−1cm−2sr−1. 4 Discussion (a) 2.0 4.1 Spatialstructure Counts s keV−1−1 101...055 kTe = 0.40 keV Tcohmepsopneecntrtasl;athneallyoswistsehmopwesratthuartetRhePNcoEmpploasnmenatcaonndtathineshtiwgoh 0 temperature Fe-rich component. This suggests that the distri- -2 Photons cms keV−1−1 0000....01234 bIi1nnu.3ttoi0horendkseeSrVoi-t)fKo.tWhibneeavnetdwsditvoi(gi1dca.eot7edm5–ttphh2oee.n1mde0nisbtktsyreiVabtrhu)eetiaodcnniodf,frerwterheseepnotmFnfeadr-doiLnemgbXeauIannScddhei(mr0olya.t7hgin0eerg–s. 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 (b) Energy (keV) continuum image for which we selected the line-free band of 2.0 1.50–1.70 keV. We show the images in Figure 6, which indi- Counts s keV−1−1 101...055 kTe = 0.85 keV cisatmesortehactoSmipdaicstt.ribInutseosmueniSfoNrRmsl,yrweghaerrdelaesssthoefFtheedtyisptreibouftitohne explosion,distributionsofFeareobservedtobecentered(e.g., 0 V−1 Uchidaetal.2009;Hayatoetal.2010). Theobserveddistribu- -2 ms ke−1 0.1 tions areconsistent with the widely believed picture of super- Photons c0.005 ncloovsaerntuocltehoescyennthteersiosftthhaetphreoagveienriteolre.mentstendtobeproduced 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 Energy (keV) For a detailed analysis of the Fe distribution, we extracted spectra from the three regions (i)–(iii) in NE indicated by the Fig.5.(a) NE spectrum of XIS0+3 (crosses) and the plasma model with (top)andwithout(bottom)responsematrixesmultiplied(solidlines)inthe whitelinesinthebottompanelofFigure6.Wefittedthespectra energybandof0.5–1.2keV.TheplasmamodelconsistsonlyofFeandNi of each region with the same model as Figure 4 (ne-v). We components withNH =1.7×1021 cm−2, kTe =0.40keV, kTinit = fixedkT oftheRPcomponent tothebest-fitvalue, 0.46keV. 3.0keVandnet=6.0×1011cm−3s. (b)Sameas(a)butwithkTe= e 0.85keV. Figure7showstheresultantabundanceratiosofFetoSi. The ratiointheinnerregionissignificantlyhigherandsuggeststhe PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 7 Region (i) (ii) (iii) Si ) 0.25 Right ascension Si / 5:28:00.0 5:26:00.0 5:24:00.0 Fe )(/ 0.2 e / 0.0 (F 0:0 0.15 3 3: 4 0.1 NE n 0.05 o 0 0 6 12 18 ati 00. Angular distance from the NE rim (arcmin) n 0: ecli 43:0 Fig.7.AbundanceratiosofFetoSiintheregions(i)–(iii)asafunctionof D angulardistancesfromtheNErimtowardthecenteroftheremnant. W 0 0. 0 0: center-filleddistributionofFe. 3 2: 4 4.2 AmbientgasdensityandSNRage 0.03 0.06 0.13 0.25 0.50 1.0 In our spectral analysis, the volume emission measures are Right ascension 2.7×1057 cm−3 and 1.0×1058 cm−3 inW and NE,respec- 5:28:00.0 5:26:00.0 5:24:00.0 tively. The volumes areobtained to be4.1×1059 f cm3 and 1.8×1059 f cm3 for the W and NE plasmas, respectively, 0 00. wheref isthe filling factor, assumingthe morphologies tobe 0: 3 prisms whose bases arethe Wand NE regions and depths are 3: 4 40pcand20pcforWandNE,respectively. Withthevolume emission measures, we obtain the electron densities ne,W = n (i) (ii) (iii) 0.3(f/0.1)−1/2 cm−3andne,NE=0.9(f/0.1)−1/2 cm−3for o 0 WandNE,respectively. Theysuggest thatthe ambientgas is nati 0:00. denser in NE than that in W. This is supported by the radio cli 3:0 morphology,thesmallershellintheeasternside. Anotherclue e 4 D of denser gasin NE isthe GeVgamma-rayemission detected in the eastern part of the remnant by FermiLAT observations (Araya2013).Ifπ0decaysarethemainproductionprocessfor 0 0. thegammarays,densegas,whichactsastargetsforaccelerated 0 0: protonsforπ0production,wouldbeinNE. 3 2: 4 In the spectral analysis, we obtained ne,W t = 4.0× 1011 cm−3 s and ne,NE t = 6.1×1011 cm−3 s for the W and NE plasmas, respectively. With ne,W and ne,NE calcu- 0.03 0.06 0.13 0.25 0.50 1.0 lated above based on the emission measures, the timescales are estimated to be t = 1.4×105 f1/2 yr for W and t = Fig.6.XISimagesofG166.0+4.3in1.75–2.10keVband(Top: Si-Kband) andthe0.70–1.30keVband(Bottom:Fe-LandNi-Lband)aftersubtraction 7.1×104 f1/2 yrforNE. Theionization timescale fortheW oftheNXBandcorrectionofthevignettingeffect. Theimagesaredivided plasma,whichisanIP,isexpectedtobealmostthesameasthe bythecorrespondingunderlyingcontinuumimageforwhichweselectedthe age of the remnant, and, therefore, we estimate the age to be line-freebandof1.50–1.70keV.Thescaleisnormalizedsothatthepeak becomesunity.ThecontoursarearadioimageoftheWENSSat325MHz. tage=4×104 (f/0.1)1/2 yr. With ne,NE t, wecanestimate the elapsedtimesince recombination startedtodominate over ionizationtobet =2×104(f/0.1)1/2 yr(<t ). rec age 8 PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 4.3 Originofrecombiningplasma WENSSteam.ThisworkissupportedbyJSPSScientificResearchgrant numbers15J01842(H.M.),15H02090,26610047and25109004(T.G.T.), The rarefaction (Itoh & Masai 1989) and thermal conduction 26800102(H.U.),25109004(T.T.),and16J00548(K.K.N.). (Kawasakietal.2002) scenarios have beenconsidered forthe formation process of RPs. In either case, the environment of theremnantisakeytotheRPproductionprocess. Wediscov- References eredanRPonlyinapartofG166.0+4.3, theouter partof the Ackermann,M.,etal.2013,Science,339,807 NEregion, wheretheambient gas isdenser. IntheWregion, Albert,J.,etal.2007,ApJL,664,L87 thespectrumisreproducedbytheIPmodel. Thedifferentgas Anders,E.,&Grevesse,N.1989,Geochim.Cosmochim.Acta,53,197 environmentsbetweentheWandNEregionsmightbeactually Araya,M.2013,MNRAS,434,2202 responsibleforthedifferenceoftheplasmastates. Bocchino,F.,Miceli,M.,&Troja,E.2009,A&A,498,139 Burrows,D.N.,&Guo,Z.1994,ApJL,421,L19 In the rarefaction scenario, the electron temperature is de- Cox,D.P.,etal.1999,ApJ,524,179 creasedbyadiabaticcoolingwhentheblastwavebreaksoutof Dickey,J.M.,&Lockman,F.J.1990,ARA&A,28,215 dense CSM into rarefied ISM. The lower the ISM density is, Guo,Z.,&Burrows,D.N.1997,ApJL,480,L51 themoreeffectivetheadiabaticcoolingmustbe(Shimizuetal. Hayato,A.,etal.2010,ApJ,725,894 2012). Therefore, inthis scenario, wecannaturally expect an Ishisaki,Y.,etal.2007,PASJ,59,113 RPintheWregionwhoseambientgasdensitywouldbelower. Itoh,H.,&Masai,K.1989,MNRAS,236,885 Ourresult,wherewefoundanRPonlyintheNEregion,isnot Kalberla,P.M.W.,etal.2005,A&A,440,775 Kamitsukasa,F.,etal.2016,PASJ,68,S7 simplyexplainedbytherarefactionsenario. Kawasaki,M.T.,etal.2002,ApJ,572,897 Inthethermalconductionscenario,anRPisanticipatedina Koyama,K.,etal.2007,PASJ,59,23 partoftheremnantwhereblastwavesareincontactwithcool Landecker, T. L., Pineault, S., Routledge, D., & Vaneldik, J. F. 1982, dense gas. In the caseof G166.0+4.3, the RP was discovered ApJL,261,L41 indeedinthedenserNEregion. Inourresults,thetemperature Lazendic,J.S.,&Slane,P.O.2006,ApJ,647,350 oftheinnerFe-richplasmaishigher(kT =0.87keV)thanthat Masui,K.,etal.2009,PASJ,61,S115 e oftheouterRP(kT =0.46keV). Inthisscenario,theplasma Morrison,R.,&McCammon,D.1983,ApJ,270,119 e Ohnishi,T.,etal.2011,PASJ,63,527 iscooledfromtheoutsidelayers. Therefore,itispossiblethat Ozawa, M., Koyama, K., Yamaguchi, H., Masai, K., &Tamagawa, T. theplasmaiscooledonlyintheouterpartoftheNEregion. 2009,ApJL,706,L71 Pineault,S.,Landecker,T.L.,&Routledge,D.1987,ApJ,315,580 Rho,J.,&Petre,R.1998,ApJL,503,L167 5 Summary Sawada,M.,&Koyama,K.2012,PASJ,64,81 We analyzed the Suzaku XIS data of SNR G166.0+4.3. The Serlemitsos,P.J.,etal.2007,PASJ,59,S9 resultsweobtainedaresummarizedasfollows. Sharpless,S.1959,ApJS,4,257 Shelton,R.L.,etal.1999,ApJ,524,192 1. The plasma in the NE region consists of two components. Shimizu,T.,Masai,K.,&Koyama,K.2012,PASJ,64,24 One is the Fe-rich component with kTe =0.87+−00..0023 keV. Tawa,N.,etal.2008,PASJ,60,S11 TheotheristheRPcomponentoftheotherlighterelements Uchida,H.,Tsunemi,H.,Katsuda,S.,Kimura,M.,&Kosugi,H.2009, with kT = 0.46±0.03 keV, kT = 3 keV(fixed) and PASJ,61,301 e init n t=(6.1+0.5)×1011cm−3s. Uchida,H.,etal.2012,PASJ,64,141 e −0.4 Uchida,H.,Koyama,K.,&Yamaguchi,H.2015,ApJ,808,77 2. The spectrum in the W region is well fitted with a one- White,R.L.,&Long,K.S.1991,ApJ,373,543 componentIPmodelwithkT =0.83±0.01keV,kT = e init Yamaguchi,H.,etal.2009,ApJL,705,L6 0.01keV(fixed)andn t=(4.0+0.7)×1011cm−3s. e −0.5 Yamaguchi,H.,Koyama,K.,&Uchida,H.2011,PASJ,63,S837 3. The Fe-rich plasma is concentrated near the center of the remnant whereas the other elements are distributed in the outerregion. 4. Ourresultsofthespectralanalysisarenotsimplyexplained by the rarefaction scenario, whereas the origin of the RP wouldbeexplainedbythethermalconductionwiththecool densegasinthenortheasternpartoftheremnant. Acknowledgments The authors are grateful to Prof. Katsuji Koyama for helpful advice. WedeeplyappreciatealltheSuzakuteammembers. Wealsothankthe

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.