ebook img

Localized Dynamics of Thin-Walled Shells PDF

367 Pages·2020·2.959 MB·\367
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Localized Dynamics of Thin-Walled Shells

Localized Dynamics of Thin-Walled Shells Monographs and Research Notes in Mathema(cid:127)cs Series Editors: John A. Burns, Thomas J. Tucker,Miklos Bona, Michael Ruzhansky About the Series This series is designed to capture new developments and summarize what is known over the en!re field of mathema!cs, both pure and applied. It will include a broad range of monographs and research notes on current and developing topics that will appeal to academics, graduate students, and prac!!oners. Interdisciplinary books appealing not only to the mathema!cal community, but also to engineers, physicists, and computer scien!sts are encouraged. This series will maintain the highest editorial standards, publishing well-developed monographs as well as research notes on new topics that are final, but not yet refined into a formal monograph. The notes are meant to be a rapid means of publica!on for current material where the style of exposi!on reflects a developing topic. Inverse Sca!eringProblems and their Applica(cid:127)on to Non-Linear Integrable Equa(cid:127)ons Pham Loi Vu Spectral Methods Using Mul(cid:127)variate Polynomials On The Unit Ball Kendall Atkinson, David Chien, and Olaf Hansen Glider Representa(cid:127)ons Frederik Caenepeel, Fred Van Oystaeyen La"ce Point Iden(cid:127)(cid:127)es and Shannon-Type Sampling Willi Freeden, M. Zuhair Nashed Summable Spaces and Their Duals, Matrix Transforma(cid:127)ons and Geometric Proper(cid:127)es Feyzi Basar, Hemen Du!a Spectral Geometry of Par(cid:127)al Differen(cid:127)al Operators (Open Access) Michael Ruzhansky, Makhmud Sadybekov, Durvudkhan Suragan Linear Groups: The Accent on Infinite Dimensionality Martyn Russel Dixon, Leonard A. Kurdachenko, Igor Yakov Subbo"n Localized Dynamics of Thin-Walled Shells Gennadi I. Mikhasev, Petr E. Tovs"k For more informa!on about this series please visit: h$ps://www.crcpress.com/Chapman--HallCRC-Monographs-and-Research-Notes-in- Mathema!cs/book-series/CRCMONRESNOT Localized Dynamics of Thin-Walled Shells Gennadi I. Mikhasev Belarusian State University Petr E. Tovstik Saint Petersburg State University Firsteditionpublished2020 byCRCPress 6000BrokenSoundParkwayNW,Suite300,BocaRaton,FL33487-2742 andbyCRCPress 2ParkSquare,MiltonPark,Abingdon,Oxon,OX144RN (cid:2)c 2020Taylor&FrancisGroup,LLC CRCPressisanimprintofTaylor&FrancisGroup,LLC Reasonableeffortshavebeenmadetopublishreliabledataandinformation,buttheauthor and publisher cannot assume responsibility for the validity of all materials or the conse- quences of their use. The authors and publishers have attempted to trace the copyright holdersofallmaterialreproducedinthispublicationandapologizetocopyrightholdersif permissiontopublishinthisformhasnotbeenobtained.Ifanycopyrightmaterialhasnot beenacknowledgedpleasewriteandletusknowsowemayrectifyinanyfuturereprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means,nowknownorhereafterinvented,includingphotocopying,microfilming,andrecord- ing,orinanyinformationstorageorretrievalsystem,withoutwrittenpermissionfromthe publishers. For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rose- wood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC [email protected] Trademark Notice: Product or corporate names may be trademarks or registered trade- marks,andareusedonlyforidentificationandexplanationwithoutintenttoinfringe. Library of Congress Cataloging-in-Publication Data Names:Mikhasev,G.I.,author.|Tovstik,P.E.,author. Title:Localizeddynamicsofthin-walledshells/GennadiI.Mikhasevand PetrE.Tovstik. Description:Firstedition.|BocRaton:CRCPress,2020.|Series: Chapman & Hall/CRC monographs and research notes in mathematics | Includesbibliographicalreferencesandindex. Identifiers: LCCN 2019060133 | ISBN 9781138069749 (hardback) | ISBN 9781315115467(ebook) Subjects: LCSH: Shells (Engineering)--Vibration--Mathematical models. | Thin-walledstructures--Vibration--Mathematicalmodels.| Localizedwaves.|Wavepackets.|Asymptoticexpansions. Classification:LCCTA660.S5M4872020|DDC624.1/7762015118--dc23 LCrecordavailableathttps://lccn.loc.gov/2019060133 ISBN:978-1-138-06974-9(hbk) ISBN:978-1-315-11546-7(ebk) TypesetinCMR byNovaTechsetPrivateLimited,Bengaluru&Chennai,India Contents Preface xi Authors xv 1 Introduction 1 1.1 Two-dimensional theories in the dynamics of thin shells: Brief overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Localized modes in the dynamics of thin-walled structures . 4 1.2.1 Mode localization induced by features in boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 Edge vibrations of thin plates and shells . . . . . . . . 5 1.2.3 Interfacial vibrations in thin plates and shells . . . . . 7 1.2.4 Mode localization induced by inhomogeneity of geometrical and physical parameters . . . . . . . . . . 7 1.3 Localized parametric vibrations of thin-walled structures . . 8 1.4 Localized waves in thin shells . . . . . . . . . . . . . . . . . . 10 1.5 Asymptotic methods in the analysis of localized dynamics of thin shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Equations of the two-dimensional theory of shells 17 2.1 Geometric relations . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 ElasticityrelationsandboundaryconditionsfortheKirchhoff– Love model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Governing equations. Membrane equations . . . . . . . . . . 26 2.5 Qualitative analysis of the frequency spectrum for free vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.6 Dynamic equations for pre-stressed shells . . . . . . . . . . . 31 2.7 The Timoshenko–Reissner model for a transversely isotropic shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.8 Timoshenko–Reissner shell inhomogeneous in the thickness direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 v vi Contents 2.9 The equivalent single layer model for laminated transversally isotropic cylindrical shells . . . . . . . . . . . . . . . . . . . 40 2.9.1 Governing equations in terms of displacements . . . . 41 2.9.2 Technical theory equations . . . . . . . . . . . . . . . 43 2.10 On the error of 2D shell theories . . . . . . . . . . . . . . . . 47 3 Localized vibration modes of plates and shells of revolution 51 3.1 On the modes of localized vibrations of shells . . . . . . . . . 52 3.2 Localized vibration modes of a plate with free rectilinear edge 55 3.2.1 The bending vibrations . . . . . . . . . . . . . . . . . 55 3.2.2 The in-plane vibrations . . . . . . . . . . . . . . . . . 57 3.3 Localized vibration modes of a circular plate . . . . . . . . . 58 3.4 Vibrations of a shell of revolution . . . . . . . . . . . . . . . 62 3.5 Non-uniform localized modes of shell vibrations . . . . . . . 65 3.5.1 Effectofinitialmomentlessstressesonthenon-uniform vibration modes . . . . . . . . . . . . . . . . . . . . . 69 3.6 Oscillating vibration modes localized near the edge . . . . . 71 3.7 Construction algorithm of localized solutions . . . . . . . . . 75 3.8 Vibration modes of a shell of revolution localized near a parallel lying strictly within the shell . . . . . . . . . . . . . 78 3.9 Vibrationmodesofapre-stressednon-uniformcylindricalshell localized near a parallel . . . . . . . . . . . . . . . . . . . . . 81 3.9.1 Axisymmetric vibrations . . . . . . . . . . . . . . . . . 82 3.9.2 Non-axisymmetric vibrations . . . . . . . . . . . . . . 84 3.10 Localized modes of axisymmetric vibrations of an infinitely long non-uniform cylindrical shell resting on an elastic foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.11 Transverse shear influence on the localized vibration modes of shells of revolution . . . . . . . . . . . . . . . . . . . . . . . . 91 3.11.1 Effect of boundary conditions on stability of a circular cylindrical shell . . . . . . . . . . . . . . . . . . . . . . 93 3.11.2 Localized non-uniform vibration modes . . . . . . . . 95 4 Localized vibration modes of cylindrical and conic shells 97 4.1 Equations of localized shells vibrations, and boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.2 Low-frequency vibrations of circular cylindrical shells . . . . 100 4.3 Localized vibrations modes of cylindrical shells . . . . . . . . 102 4.4 Localized vibration modes of a cylindrical panel near a free or a weakly supported rectilinear edge. . . . . . . . . . . . . . . 110 4.5 Localized vibration modes of shells close to cylindrical ones . 115 4.6 Localized vibration modes of conic shells . . . . . . . . . . . 120 Contents vii 4.7 Low-frequency vibrations of a Timoshenko–Reissner circular cylindrical shell . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.8 Localized vibration modes of a Timoshenko–Reissner non-circular cylindrical shell . . . . . . . . . . . . . . . . . . 129 4.9 Localized vibration modes of Timoshenko–Reissner cylindrical panel with a free or a weakly supported edge . . . . . . . . . 133 5 Localized Parametric Vibrations of Thin Shells 139 5.1 Localized parametric vibrations of cylindrical shells under periodic axial forces . . . . . . . . . . . . . . . . . . . . . . . 140 5.1.1 Asymptotic approach . . . . . . . . . . . . . . . . . . 141 5.1.2 Reconstruction of the asymptotic expansion . . . . . . 146 5.1.3 Effect of dissipative forces . . . . . . . . . . . . . . . . 150 5.1.4 Parametric instability domains . . . . . . . . . . . . . 150 5.1.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.2 Parametric vibrations of laminated cylindrical shells under periodic axial forces: effect of shear . . . . . . . . . . . . . . 156 5.2.1 Asymptotic solution . . . . . . . . . . . . . . . . . . . 158 5.2.2 Reconstruction of asymptotic solution . . . . . . . . . 162 5.2.3 Main region of instability . . . . . . . . . . . . . . . . 165 5.3 Parametric vibrations of cylindrical and conical shells under pulsing pressure . . . . . . . . . . . . . . . . . . . . . . . . . 166 5.3.1 Parametric vibrations of conical shells . . . . . . . . . 166 5.3.2 Parametric vibrations of a cylindrical shell under pulsing pressure . . . . . . . . . . . . . . . . . . . . . 174 5.3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 176 5.4 Parametric vibrations of nearly cylindrical shells . . . . . . . 178 5.5 Localized axisymmetric vibrations of long cylindrical shells resting on elastic foundation . . . . . . . . . . . . . . . . . . 183 6 Wave Packets in Medium-length Cylindrical Shells 189 6.1 Wave packets in a non-circular cylindrical shell . . . . . . . . 190 6.1.1 Setting the problem . . . . . . . . . . . . . . . . . . . 190 6.1.2 Splitting the initial WP . . . . . . . . . . . . . . . . . 192 6.1.3 The initial-boundary-value problem for a fixed WP . . 193 6.1.4 Reduction of the original 2D problem to the sequence of 1D problems on moving generatrix . . . . . . . . . 194 6.1.5 Solution of the sequence of 1D problems . . . . . . . 197 6.1.6 Integration of the amplitude equation . . . . . . . . . 201 6.1.7 Definition of constants of integration . . . . . . . . . 203 6.2 Analysis of the constructed solutions . . . . . . . . . . . . . 205 6.2.1 Stationary wave packet (localized eigenmode) . . . . 206 6.2.2 Properties of the Hamiltonian system solutions . . . . 207 viii Contents 6.3 The influence of shell geometry on the propagation of wave packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 6.4 Constructing solutions in the form of running wave packets based on Maslov’s method . . . . . . . . . . . . . . . . . . . 224 6.4.1 Canonical system of equations and auxiliary initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . 228 6.4.2 Class of asymptotically equivalent functions . . . . . . 230 6.4.3 Approximatesolutionofthecanonicalsystem(Maslov’s method) . . . . . . . . . . . . . . . . . . . . . . . . . . 230 6.4.4 The leading approximation . . . . . . . . . . . . . . . 234 6.4.5 Comparison of different solutions . . . . . . . . . . . . 235 7 Effect of External Forces on Wave Packets in Zero Curvature Shells 237 7.1 Classification of dynamical stress-strain state . . . . . . . . 238 7.2 Effect of external forces on non-stationary localized vibrations of a medium-length cylindrical shell . . . . . . . . . . . . . . 239 7.2.1 Stationary wave packets . . . . . . . . . . . . . . . . . 242 7.2.1.1 Stationary WPs in the case of non-uniform hoop stress resultant. . . . . . . . . . . . . . 242 7.2.1.2 Stationary WPs in the case of non-uniform elastic foundation . . . . . . . . . . . . . . . 243 7.2.2 Effect of stationary non-uniform hoop stress resultants on dynamics of WPs . . . . . . . . . . . . . . . . . . . 244 7.2.3 Effectofinhomogeneouselasticfoundationondynamics of WPs . . . . . . . . . . . . . . . . . . . . . . . . . . 245 7.2.4 Effect of dynamic hoop stress resultants on dynamics of WPs . . . . . . . . . . . . . . . . . . . . . . . . . . 246 7.3 Localized families of bending waves in medium-length conical shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 7.3.1 Eigenmodes of bending vibrations of a beam with variable characteristics . . . . . . . . . . . . . . . . . . 252 7.3.2 Algorithm for constructing solutions and principal relations . . . . . . . . . . . . . . . . . . . . . . . . . . 253 7.4 Wave packets in a cylindrical shell pre-stressed by axial forces 255 7.4.1 Algorithm for constructing a solution in the form of travelling WPs . . . . . . . . . . . . . . . . . . . . . . 256 7.4.2 Resolving equations and relations . . . . . . . . . . . . 259 7.4.3 Solution analysis . . . . . . . . . . . . . . . . . . . . . 260 7.4.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 262 Contents ix 8 Wave Packets in Long Shells of Revolution Travelling in the Axial Direction 265 8.1 Governing equations in terms of displacements. Setting the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 8.2 Classification of integrals of the dynamic equations . . . . . 269 8.2.1 Axisymmetric waves . . . . . . . . . . . . . . . . . . . 270 8.2.1.1 Longitudinal waves . . . . . . . . . . . . . . 270 8.2.1.2 Bending waves . . . . . . . . . . . . . . . . . 271 8.2.2 Non-axisymmetric waves with low variability along a parallel . . . . . . . . . . . . . . . . . . . . . . . . . . 272 8.2.2.1 Tangential waves . . . . . . . . . . . . . . . . 272 8.2.2.2 Bending waves . . . . . . . . . . . . . . . . . 272 8.2.3 Non-axisymmetric waves with large variability along a parallel . . . . . . . . . . . . . . . . . . . . . . . . . . 273 8.2.3.1 Tangential waves . . . . . . . . . . . . . . . . 273 8.2.3.2 Bending waves . . . . . . . . . . . . . . . . . 273 8.3 Asymptotic solution as superposition of packets of axisymmetric flexural and tangential waves . . . . . . . . . . 273 8.3.1 Axisymmetric packets of bending waves . . . . . . . . 274 8.3.2 Axisymmetric packets of longitudinal waves . . . . . . 278 8.3.3 Axisymmetric packets of torsional waves . . . . . . . . 280 8.3.4 Superposition of axisymmetric WPs . . . . . . . . . . 280 8.3.5 Solution Properties. Examples . . . . . . . . . . . . . 282 8.4 Non-axisymmetric WPs in shells of revolution with a small number of waves in the circumferential direction . . . . . . . 286 8.5 Non-axisymmetric WPs in shells of revolution with a large number of waves in the circumferential direction . . . . . . . 287 8.5.1 Non-axisymmetric packets of tangential waves. . . . . 288 8.5.2 Non-axisymmetric packets of bending waves . . . . . . 290 8.5.3 Superposition of solutions . . . . . . . . . . . . . . . . 292 8.5.4 The effect of the shell geometry on dynamics of WPs of tangential waves . . . . . . . . . . . . . . . . . . . 294 8.6 Wave packets in long cylindrical shells with variable parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 8.6.1 Axisymmetric packets of bending waves . . . . . . . . 297 8.6.1.1 Effect of the material inhomogeneity on the WP dynamics . . . . . . . . . . . . . . . . . 298 8.6.1.2 Effect of the thickness variation on the WP dynamics . . . . . . . . . . . . . . . . . . . . 301 8.6.2 Axisymmetric packets of longitudinal waves . . . . . 301 8.6.3 Axisymmetric packets of torsional waves . . . . . . . 304 8.6.4 Non-axisymmetric WPs with a large number of waves in the circumferential direction . . . . . . . . . . . . . 305

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.