ebook img

Local-Search based Approximation Algorithms for Mobile Facility Location Problems PDF

0.51 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Local-Search based Approximation Algorithms for Mobile Facility Location Problems

Local-Search based Approximation Algorithms for Mobile Facility Location Problems∗ SaraAhmadian† ZacharyFriggstad† ChaitanyaSwamy† Abstract 3 1 Weconsiderthemobilefacilitylocation(MFL)problem. Wearegivenasetoffacilitiesandclients 0 locatedinacommonmetricspaceG=(V,c). Thegoalistomoveeachfacilityfromitsinitiallocation 2 toadestination(inV)andassigneachclienttothedestinationofsomefacilitysoastominimizethesum n of the movement-costs of the facilities and the client-assignment costs. This abstracts facility-location a settingswhereonehastheflexibilityofmovingfacilitiesfromtheircurrentlocationstootherdestinations J soastoserveclientsmoreefficientlybyreducingtheirassignmentcosts. 8 Wegivethefirstlocal-searchbasedapproximationalgorithmforthisproblemandachievethebest- 1 known approximation guarantee. Our main result is (3 + (cid:15))-approximation for this problem for any constant (cid:15) > 0 using local search. The previous best guarantee for MFL was an 8-approximation al- ] S gorithm due to [13] based on LP-rounding. Our guarantee matches the best-known approximation D guarantee for the k-median problem. Since there is an approximation-preserving reduction from the . k-medianproblemtoMFL,anyimprovementofourresultwouldimplyananalogousimprovementfor s c thek-medianproblem. Furthermore,ouranalysisistight(uptoo(1)factors)sincethetightexamplefor [ thelocal-searchbased3-approximationalgorithmfork-mediancanbeeasilyadaptedtoshowthatour 1 local-search algorithm has a tight approximation ratio of 3. One of the chief novelties of the analysis v isthatinordertogenerateasuitablecollectionoflocal-searchmoveswhoseresultinginequalitiesyield 8 the desired bound on the cost of a local-optimum, we define a tree-like structure that (loosely speak- 7 ing) functions as a “recursion tree”, using which we spawn off local-search moves by exploring this 4 treetoaconstantdepth. Ourresultsextendtotheweightedgeneralizationwhereineachfacilityihasa 4 . non-negativeweightwiandthemovementcostforiiswitimesthedistancetraveledbyi. 1 0 3 1 Introduction 1 : v Facility location problems have been widely studied in the Operations Research and Computer Science i X communities (see, e.g., [25] and the survey [20]), and have a wide range of applications. In its simplest r a version, uncapacitated facility location (UFL), we are given a set of facilities or service-providers with openingcosts,andasetofclientsthatrequireservice,andwewanttoopensomefacilitiesandassignclients toopenfacilitiessoastominimizethesumofthefacility-openingandclient-assignmentcosts. Anoft-cited prototypical example is that of a company wanting to decide where to locate its warehouses/distribution centerssoastoserveitscustomersinacost-effectivemanner. We consider facility-location problems that abstract settings where facilities are mobile and may be relocated to destinations near the clients in order to serve them more efficiently by reducing the client- assignmentcosts. Moreprecisely,weconsiderthemobilefacilitylocation(MFL)problemintroducedby[11, ∗A preliminary version [2], without the results in Section 6, appeared in the Proceedings of the 24th Annual ACM-SIAM SymposiumonDiscreteAlgorithms,2013. †{sahmadian,zfriggstad,cswamy}@math.uwaterloo.ca. Dept. ofCombinatoricsandOptimization,Univ. Wa- terloo,Waterloo,ONN2L3G1.SupportedinpartbyNSERCgrant327620-09andanNSERCDiscoveryAcceleratorSupplement award.Thesecondandthirdauthorsarealsosupportedbythethirdauthor’sOntarioEarlyResearcherAward. 1 13], which generalizes the classical k-median problem (see below). We are given a complete graph G = (V,E ) with costs {c(u,v)} on the edges, a set D ⊆ V of clients with each client j having d units of G j demand, and a set F ⊆ V of k initial facility locations. We use the term facility i to denote the facility whoseinitiallocationisi ∈ F. AsolutionS toMFLmoveseachfacilityitoafinallocations ∈ V (which i could be the same as i), incurring a movement cost c(i,s ), and assigns each client j to a final location i s ∈ S, incurring assignment cost d c(j,s). The total cost of S is the sum of all the movement costs and j assignment costs. More formally, noting that each client will be assigned to the location nearest to it in S, wecanexpressthecostofS as (cid:88) (cid:88) MFL(S) := c(i,s )+ d c(j,σ(j)) i j i∈F j∈D where σ(v) (for any node v) gives the location in S nearest to v (breaking ties arbitrarily). We assume throughoutthattheedgecostsformametric. Weusethetermsnodesandlocationsinterchangeably. MobilefacilitylocationfallsintothegenreofmovementproblemsintroducedbyDemaineetal.[11]. In theseproblems,wearegivenaninitialconfigurationinaweightedgraphspecifiedbyplacing“pebbles”on thenodesand/oredges;thegoalistomovethepebblessoastoobtainadesiredfinalconfigurationwhilemin- imizingthemaximum,ortotal,pebblemovement. MFLwasintroducedbyDemaineetal. asthemovement problemwherefacility-andclient-pebblesareplacedrespectivelyattheinitiallocationsofthefacilitiesand clients,andinthefinalconfigurationeveryclient-pebbleshouldbeco-locatedwithsomefacility-pebble. Our results. We give the first local-search based approximation algorithm for this problem and achieve the best-known approximation guarantee. Our main result is a (3 + (cid:15))-approximation for this problem for any constant (cid:15) > 0 using a simple local-search algorithm. This improves upon the previous best 8- approximation guarantee for MFL due to Friggstad and Salavatipour [13], which is based on LP-rounding andisnotcombinatorial. Thelocal-searchalgorithmweconsiderisquitenaturalandsimple. Observethatgiventhefinallocations ofthefacilities,wecanfindtheminimum-costwayofmovingfacilitiesfromtheirinitiallocationstothefinal locationsbysolvingaminimum-costperfect-matchingproblem(andtheclientassignmentsaredetermined by the function σ defined above). Thus, we concentrate on determining a good set of final locations. In our local-search algorithm, at each step, we are allowed to swap in and swap out a fixed number (say p) of locations. Clearly, for any fixed p, we can find the best local move efficiently (since the cost of a set of final locations can be computed in polytime). Note that we do not impose any constraints on how the matching between the initial and final locations may change due to a local move, and a local move might entail moving all facilities. It is important to allow this flexibility, as it is known [13] that the local-search procedurethatmoves,ateachstep,aconstantnumberoffacilitiestochosendestinationshasanunbounded approximationratio. Our main contribution is a tight analysis of this local-search algorithm (Section 4). Our guarantee matches(uptoo(1)terms)thebest-knownapproximationguaranteeforthek-medianproblem. Sincethere isanapproximation-preservingreductionfromthek-medianproblemtoMFL[13]—choosearbitraryinitial facility locations and give each client a huge demand D—any improvement of our result would imply an analogousimprovementforthek-medianproblem. (Inthisrespect, ourresultisanoteworthyexceptionto the prevalent state of affairs for various other generalizations of UFL and k-median—e.g., the data place- mentproblem[4],{matroid-,red-blue-}median[22,16,9,6],k-facility-location[12,15]—wherethebest approximationratiofortheproblemisworsebyanoticeablefactor(comparedtoUFLork-median);[14]is anotherexception.) Furthermore, ouranalysisistight(uptoo(1)factors)becausebysuitablysettingD in thereductionof[13],wecanensurethatourlocal-searchalgorithmforMFLcoincideswiththelocal-search algorithmfork-medianin[3]whichhasatightapproximationratioof3. 2 We also consider a weighted generalization of the problem (Section 5), wherein each facility i has a weightw indicatingthecostincurredper-unitdistancemovedandthecostformovingitos isw c(i,s ). i i i i (Thiscanbeusedtomodel,forexample,thesettingwheredifferentfacilitiesmoveatdifferentspeeds.) Our analysisisversatileandextendstothisweightedgeneralizationtoyieldthesameperformanceguarantee. For thefurthergeneralizationoftheproblem,wherethefacility-movementcostsmaybearbitraryandunrelated totheclient-assignmentcosts(forwhicha9-approximationcanbeobtainedviaLP-rounding;see“Related work”),weshowthatlocalsearchbasedonmultipleswapshasabadapproximationratio(Section7). Theanalysisleadingtotheapproximationratioof3(asalsothesimpleranalysisinSection3yieldinga 5-approximation)cruciallyexploitsthefactthatwemayswapmultiplelocationsinalocal-searchmove. It isnaturaltowonderthenifonecanproveanyperformanceguaranteesforthelocal-searchalgorithmwhere wemayonlyswapinandswapoutasinglelocationinalocalmove. (Naturally,thesingle-swapalgorithm iseasiertoimplementandthusmaybemorepractical). InSection6,weanalyzethissingle-swapalgorithm andprovethatitalsohasaconstantapproximationratio. Ourtechniques. Theanalysisofourlocal-searchprocedurerequiresvariousnovelideas. Asiscommon intheanalysisoflocal-searchalgorithms,weidentifyasetoftestswapsanduselocaloptimalitytogenerate suitable inequalities from these test swaps, which when combined yield the stated performance guarantee. One of the difficulties involved in adapting standard local-search ideas to MFL is the following artifact: in MFL,thecostof“opening”asetSoflocationsisthecostofthemin-costperfectmatchingofF toS,which, unlikeotherfacility-locationproblems,isahighlynon-additivefunctionofS (andasmentionedabove,we needtoallowforthematchingfromF toS tochangeinnon-localways). Inmostfacility-locationproblems with opening costs for which local search is known to work, we may always swap in a facility used by the globaloptimum(bypossiblyswappingoutanotherfacility)andeasilyboundtheresultingchangeinfacility cost, and the main consideration is to decide how to reassign clients following the swap in a cost-effective way; in MFL we do not have this flexibility and need to carefully choose how to swap facilities so as to ensure that there is a good matching of the facilities to their new destinations after a swap and there is a frugalreassignmentofclients. This leads us to consider long relocation paths to re-match facilities to their new destinations after a swap,whichareoftheform(...,s ,o ,s ,...),wheres ando arethelocationsthatfacilityiismovedto i i i(cid:48) i i inthelocalandglobaloptimum,SandO,respectively,ands istheS-locationclosesttoo . Byconsidering i(cid:48) i aswapmoveinvolvingthestartandendlocationsofsuchapathZ,wecanobtainaboundonthemovement costofallfacilitiesi ∈ Z wheres isthestartofthepathoro servesalargenumberofclients. Toaccount i i for the remaining facilities, we break up Z into suitable intervals, each containing a constant number of unaccountedlocationswhichthenparticipateinamulti-locationswap. Thisinterval-swapmovedoesnotat firstappeartobeusefulsincewecanonlyboundthecost-changeduetothismoveintermsofasignificant multiple of (a portion of) the cost of the local optimum! One of the novelties of our analysis is to show howwecanamortizethecostofsuchexpensivetermsandmaketheircontributionnegligiblebyconsidering multipledifferentwaysofcoveringZwithintervalsandaveragingtheinequalitiesobtainedfortheseinterval swaps. Theseideasleadtotheproofofanapproximationratioof5forthelocal-searchalgorithm(Section3). The tighter analysis leading to the 3-approximation guarantee (Section 4) features another noteworthy idea,namelythatofusing“recursion”(uptoboundeddepth)toidentifyasuitablecollectionoftestswaps. We consider the tree-like structure created by the paths used in the 5-approximation analysis, and (loosely speaking) view this as a recursion tree, using which we spawn off interval-swap moves by exploring this tree to a constant depth. To our knowledge, we do not know of any analysis of a local-search algorithm that employs the idea of recursion to generate the set of test local moves (used to generate the inequalities thatyieldthedesiredperformanceguarantee). Webelievethatthistechniqueisanotablecontributiontothe analysisoflocal-searchalgorithmsthatisofindependentinterestandwillfindfurtherapplication. 3 Relatedwork. Asmentionedearlier,MFLwasintroducedbyDemaineetal.[11]inthecontextofmove- ment problems. Friggstad and Salavatipour [13] designed the first approximation algorithm forMFL. They gave an 8-approximation algorithm based on LP rounding by building upon the LP-rounding algorithm of Charikar et al. [8] for the k-median problem; this algorithm works only however for the unweighted case. Theyalsoobservedthatthereisanapproximation-preservingreductionfromk-mediantoMFL.Werecently learned that Halper [17] proposed the same local-search algorithm that we analyze. His work focuses on experimentalresultsandleavesopenthequestionofobtainingtheoreticalguaranteesabouttheperformance oflocalsearch. ChakrabartyandSwamy[6]observedthatMFL,evenwitharbitrarymovementcostsisaspecialcaseof thematroidmedianproblem[22]. Thus,theapproximationalgorithmsdevisedformatroidmedianindepen- dentlyby[9]and[6]yieldan8-approximationalgorithmforMFLwitharbitrarymovementcosts. There is a wealth of literature on approximation algorithms for (metric) uncapacitated and capacitated facility location (UFL and CFL), the k-median problem, and their variants; see [27] for a survey on UFL. Whereas constant-factor approximation algorithms for UFL and k-median can be obtained via a variety of techniques such as LP-rounding [28, 23, 8, 9], primal-dual methods [18, 19], local search [21, 7, 3], all knownO(1)-approximationalgorithmsforCFL(initsfullgenerality)arebasedonlocalsearch[21,30,5]. Wenowbrieflysurveytheworkonlocal-searchalgorithmsforfacility-locationproblems. Startingwiththeworkof[21],local-searchtechniqueshavebeenutilizedtodeviseO(1)-approximation algorithms for various facility-location problems. Korupolu, Plaxton, and Rajaraman [21] devised O(1)- approximation for UFL, and CFL with uniform capacities, and k-median (with a blow-up in k). Charikar √ andGuha[7],andAryaetal.[3]bothobtaineda(1+ 2)-approximationforUFL.Thefirstconstant-factor approximation for CFL was obtained by Pa´l, Tardos, and Wexler [26], and after some improvements, the current-best approximation ratio now stands at 5 + (cid:15) [5]. For the special case of uniform capacities, the analysisin[21]wasrefinedby[10],andAggarwaletal.[1]obtainthecurrent-best3-approximation. Arya et al. [3] devised a (3+(cid:15))-approximation algorithm for k-median, which was also the first constant-factor approximationalgorithmforthisproblembasedonlocalsearch. GuptaandTangwongsan[15](amongother results)simplifiedtheanalysisin[3]. Webuilduponsomeoftheirideasinouranalysis. Local-searchalgorithmswithconstantapproximationratioshavealsobeendevisedforvariousvariants oftheabovethreecanonicalproblems. MahdianandPa´l[24],andSvitkinaandTardos[29]considersettings wheretheopeningcostofafacilityisafunctionofthesetofclientsservedbyit. In[24],thiscostisanon- decreasing function of the number of clients, and in [29] this cost arises from a certain tree defined on the client set. Devanur et al. [12] and [15] consider k-facility location, which is similar to k-median except that facilities also have opening costs. Hajiaghayi et al. [16] consider a special case of the matroid median problemthattheycallthered-bluemedianproblem. Mostrecently,[14]consideredaproblemthattheycall thek-medianforestproblem,whichgeneralizesk-median,andobtaineda(3+(cid:15))-approximationalgorithm. 2 The local-search algorithm Asmentionedearlier,tocomputeasolutiontoMFL,weonlyneedtodeterminethesetoffinallocationsof thefacilities,sincewecanthenefficientlycomputethebestmovementoffacilitiesfromtheirinitialtofinal locations, andtheclientassignments. Thismotivatesthefollowinglocal-searchoperation. Givenacurrent setS ofk = |F|locations,wecanmovetoanyothersetS(cid:48) ofklocationssuchthat|S\S(cid:48)| = |S(cid:48)\S| ≤ p, where p is some fixed value. We denote this move by swap(S \ S(cid:48),S(cid:48) \ S). The local-search algorithm starts with an arbitrary set of k final locations. At each iteration, we choose the local-search move that yieldsthelargestreductionintotalcostandupdateourfinal-locationsetaccordingly; ifnocost-improving move exists, then we terminate. (To obtain polynomial running time, as is standard, we modify the above proceduresothatwechoosealocal-searchmoveonlyifthecost-reductionisatleast(cid:15)(currentcost).) 4 3 Analysis leading to a 5-approximation (cid:0) (cid:1) Wenowanalyzetheabovelocal-searchalgorithmandshowthatitisa 5+o(1) -approximationalgorithm. For notational simplicity, we assume that the local-search algorithm terminates at a local optimum; the modificationtoensurepolynomialrunningtimedegradestheapproximationbyatmosta(1+(cid:15))-factor(see alsoRemark3.8). Theorem3.1 LetF∗ andC∗ denoterespectivelythemovementandassignmentcostofanoptimalsolution. (cid:16) (cid:17) (cid:16) (cid:17) Thetotalcostofanylocaloptimumusingatmostpswapsisatmost 3+O(cid:0) 1 (cid:1) F∗+ 5+O(cid:0) 1 (cid:1) C∗. p1/3 p1/3 Althoughthisisnotthetightestguaranteethatweobtain,wepresentthisanalysisfirstsinceitintroduces (cid:0) (cid:1) many of the ideas that we build upon in Section 4 to prove a tight approximation guarantee of 3+o(1) forthelocal-searchalgorithm. Fornotationalsimplicity,weassumethatalld sare1. Allouranalysescarry j overtriviallytothecaseofnon-unit(integer)demandssincewecanthinkofaclientj havingd demandas j d co-locatedunit-demandclients. j Notation and preliminaries. We use S = {s ,...,s } to denote the local optimum, where facility i is 1 k movedtofinallocations ∈ S. WeuseO = {o ,...,o }todenotethe(globally)optimalsolution, where i 1 k againfacilityiismovedtoo . Throughout,weusestoindexlocationsinS,andotoindexlocationsinO. i Recallthat,foranodev,σ(v)isthelocationinS nearesttov. Similarly,wedefineσ∗(v)tobethelocation in O nearest to v. For notational similarity with facility location problems, we denote c(i,s ) by f , and i i c(i,o )byf∗. (Thus, f andf∗ arethe movementcostsofiinS andO respectively.) Also, we abbreviate i i i i c(cid:0)j,σ(j)(cid:1)toc ,andc(cid:0)j,σ∗(j)(cid:1)toc∗. Thus,c andc∗ aretheassignmentcostsofj inthelocalandglobal j j j j (cid:80) (cid:80) optimum respectively. (So MFL(S) = f + c .) Let D(s) = {j ∈ D : σ(j) = s} be the set i∈F i j∈D j of clients assigned to the location s ∈ S, and D∗(o) = {j ∈ D : σ∗(j) = o}. For a set A ⊆ S, we define D(A) = (cid:83) D(s);wedefineD∗(A)forA ⊆ Osimilarly. Definecap(s) = {o ∈ O : σ(o) = s}. Wesay s∈A thatscapturesallthelocationsincap(s). Thefollowingbasiclemmawillbeusedrepeatedly. Lemma3.2 Foranyclientj,wehavec(cid:0)j,σ(σ∗(j))(cid:1)−c(cid:0)j,σ(j)(cid:1) ≤ 2c∗. j Proof : Let s = σ(j), o = σ∗(j), s(cid:48) = σ(o). The lemma clearly holds if s(cid:48) = s. Otherwise, c(j,s(cid:48))− c(j,s) ≤ c(j,o)+c(o,s(cid:48))−c(j,s) ≤ c∗+c(o,s)−c(j,s) ≤ c∗+c(o,j) = 2c∗wherethesecondinequality j j j followssinces(cid:48) istheclosestlocationtooinS. To prove the approximation ratio, we will specify a set of local-search moves for the local optimum, andusethefactthatnoneofthesemovesimprovethecosttoobtainsomeinequalities,whichwilltogether yield a bound on the cost of the local optimum. We describe these moves by using the following digraph. (cid:0) (cid:1) ConsiderthedigraphG(cid:98) = F∪S∪O,{(si,i),(i,oi),(oi,σ(oi))}i∈F . WedecomposeG(cid:98)intoacollection ofnode-disjoint(simple)pathsP andcyclesCasfollows. Repeatedly,whilethereisacycleC inourcurrent digraph, we add C to C, remove all the nodes of C and recurse on the remaining digraph. After this step, a node v in the remaining digraph, which is acyclic, has: exactly one outgoing arc if v ∈ S; exactly one incomingandoneoutgoingarcifv ∈ F;andexactlyoneincoming,andatmostoneoutgoingarcifv ∈ O. Nowwerepeatedlychooseanodev ∈ S withnoincomingarcs,includethemaximalpathP startingatvin P, remove all nodes of P and recurse on the remaining digraph. Thus, each triple (s ,i,o ) is on a unique i i pathorcycleinP∪C. Definecenter(s)tobeo ∈ Osuchthat(o,s)isanarcinP∪C;ifshasnoincoming arcinP ∪C,thenletcenter(s) = nil. We will use P and C to define our swaps. For a path P = (s ,i ,o ,...,s ,i ,o ) ∈ P, define i1 1 i1 ir r ir start(P)tobes andend(P)tobeo . Noticethatσ(o ) ∈/ P. Foreachs ∈ S,letP (s) = {P : end(P) ∈ i1 ir ir c cap(s)},T(s) = {start(P) : P ∈ P (s)},andH(s) = {end(P) : P ∈ P (s)} = cap(s)\center(s). Note c c 5 that |P (s)| = |T(s)| = |H(s)| = |cap(s)|−1 for any s ∈ S with |cap(s)| ≥ 1. For a set A ⊆ S, define c (cid:83) (cid:83) (cid:83) T(A) = T(s), H(A) = H(s), P (A) = P (s). s∈A s∈A c s∈A c Abasicbuildingblockinouranalysis,involvesashiftalongans (cid:32) o = o sub-pathZ ofsomepathor i(cid:48) cycleinP ∪C. Thismeansthatweswapoutsandswapino. Weboundthecostofthematchingbetween F andS∪{o}\{s}bymovingeachinitiallocationi ∈ Z, i (cid:54)= i(cid:48) toσ(o ) ∈ Z andmovingi(cid:48) too . Thus, i i(cid:48) weobtainthefollowingsimpleboundontheincreaseinmovementcostduetothisoperation: shift(s,o) = (cid:88)(f∗−f )+ (cid:88) c(cid:0)o ,σ(o )(cid:1) ≤ 2(cid:88)f∗−c(o,σ(o)). (1) i i i i i i∈Z i∈Z:oi(cid:54)=o i∈Z Thelastinequalityusesthefactthatc(cid:0)o ,σ(o )(cid:1) ≤ c(o ,s ) ≤ f∗ +f foralli. ForapathP ∈ P,weuse i i i i i i (cid:0) (cid:1) shift(P)asashorthandforshift start(P),end(P) . 3.1 Theswapsused,andtheiranalysis We now describe the local moves used in the analysis. We define a set of swaps such that each o ∈ O is swappedintoanextentofatleastone,andatmosttwo. WeclassifyeachlocationinS asoneofthreetypes. Definet = (cid:4)p1/3(cid:5). Weassumethatt ≥ 2. • S : locationss ∈ S with|cap(s)| = 0. 0 • S : locationss ∈ S \S with|D∗(center(s))| ≤ tor|cap(s)| > t. 1 0 • S : locationss ∈ S with|D∗(center(s))| > tand0 < |cap(s)| ≤ t. 2 AlsodefineS := S ∪{s ∈ S : |cap(s)| ≤ t}(sos ∈ S iff|cap(s)| ≤ tand|D∗(center(s))| ≤ t}). 3 0 1 3 To gain some intuition, notice that it is easy to generate a suitable inequality for a location s ∈ S : 0 we can “delete” s (i.e., if s = s , then do swap(s,i)) and reassign each j ∈ D(s) to σ(σ∗(j)) (i.e., the i location in S closest to the location serving j in O). The cost increase due to this reassignment is at most (cid:80) 2c∗, and so this yields the inequality f ≤ (cid:80) 2c∗. (We do not actually do this since we j∈D(s) j i j∈D(s) j take care of the S -locations along with the S -locations.) We can also generate a suitable inequality for 0 1 a location s ∈ S (see Lemma 3.4) since we can swap in cap(s) and swap out {s} ∪ T(s). The cost 2 (cid:80) (cid:0) (cid:1) increase by this move can be bounded by shift(P) and c s,center(s) , and the latter quantity P∈Pc(s) canbechargedto 1 (cid:80) (c +c∗); ourdefinitionofS istailoredpreciselysoastoenablethis t j∈D∗(center(s)) j j 2 latterchargingargument. GeneratinginequalitiesfortheS -locationsismoreinvolved,andrequiresanother 1 building block that we call an interval swap (this will also take care of the S -locations), which we define 0 afterprovingLemma3.4. WestartoutbyprovingasimpleboundthatonecanobtainusingacycleinC. Lemma3.3 ForanycycleZ ∈ C,wehave0 ≤ (cid:80) (cid:0)−f +f∗+c(o ,σ(o ))(cid:1). i∈Z i i i i Proof: ConsiderthefollowingmatchingofF∩Z toS∩Z: wematchitoσ(o ). Thecostoftheresulting i (cid:80) (cid:80) (cid:80) new matching is f + c(i,σ(o )) which should at least f since the latter is the min-cost i∈/Z i i∈Z i i i wayofmatchingF toS. Soweobtain0 ≤ (cid:80) (cid:0)−f +c(i,σ(o ))(cid:1) ≤ (cid:80) (cid:0)−f +f∗+c(o ,σ(o ))(cid:1). i∈Z i i i∈Z i i i i Lemma3.4 Lets ∈ S ando = center(s),andconsiderswap(X := {s}∪T(s),Y := cap(s)). Wehave 2 0 ≤ MFL(cid:0)(S\X)∪Y(cid:1)−MFL(S) ≤ (cid:88) 2f∗+ (cid:88) (cid:16)t+1 ·c∗− t−1 ·c (cid:17)+ (cid:88) 2c∗. (2) i t j t j j P∈Pc(s) j∈D∗(o) j∈D({s}∪T(s)) i∈P j∈/D∗(o) 6 Proof : We can view this multi-location swap as doing swap(start(P),end(P)) for each P ∈ P (s) and c (cid:0) (cid:1) swap(s,o)simultaneously. (NoticethatnopathP ∈ P (s)containss,sinces = σ end(P) ∈/ P.) Foreach c swap(start(P),end(P))themovement-costincreaseisboundedbyshift(P) ≤ (cid:80) 2f∗. Forswap(s,o) i∈P i wemovethefacilityi,wheres = s ,too,sotheincreaseinmovementcostisatmostc(s,o) = c(σ(o),o) ≤ i c(σ(j),o) ≤ c +c∗ foreveryj ∈ D∗(o). Sosince|D∗(o)| > t,wehavec(s,o) ≤ (cid:80) cj+c∗j. Thus, j j j∈D∗(o) t theincreaseintotalmovementcostisatmost WeupperboundthechangeinassignmentcostbyreassigningtheclientsinD∗(o)∪D(X)asfollows. We reassign each j ∈ D∗(o) to o. Each j ∈ D(X) \ D∗(o) is assigned to σ∗(j), if σ∗(j) ∈ Y, and otherwise to s(cid:48) = σ(σ∗(j)). Note that s(cid:48) ∈/ X: s(cid:48) (cid:54)= s since σ∗(j) ∈/ cap(s), and s(cid:48) ∈/ T(s) since (cid:83) cap(s(cid:48)(cid:48)) = ∅. Thechangeinassignmentcostforeachsuchclientj isatmost2c∗ byLemma3.2. s(cid:48)(cid:48)∈T(s) j Thus the change in total assignment cost is at most (cid:80) (c∗ −c )+(cid:80) 2c∗. Combining j∈D∗(o) j j j∈D(X)\D∗(o) j thiswiththeboundonthemovement-costchangeprovesthelemma. Wenowdefineakeyingredientofouranalysis,calledaninterval-swapoperation,thatisusedtobound themovementcostoftheS -andS -locationsandtheassignmentcostoftheclientstheyserve. (Webuild 1 0 upon this in Section 4 to give a tighter analysis proving a 3-approximation.) Let S(cid:48) = {s(cid:48),...,s(cid:48)} ⊆ 1 r S ∪S , r ≤ t2 be a subset of at most t2 locations on a path or cycle Z in P ∪C, where s(cid:48) is the next 0 1 q+1 locationin(S ∪S )∩Z afters(cid:48). LetO(cid:48) = {o(cid:48),...,o(cid:48)} ⊆ O whereo(cid:48) = center(s(cid:48))forq = 2,...,r 0 1 q 1 r q−1 q and o(cid:48) is an arbitrary location that appears after s(cid:48) (and before s(cid:48)) on the corresponding path or cycle. r r 1 Consider each s(cid:48). If |cap(s(cid:48))| > t, choose a random path P ∈ P (s(cid:48)) with probability 1 , and set q q c q |Pc(s(cid:48)q)| X = {start(P)} and Y = {o(cid:48)}. If |cap(s(cid:48))| ≤ t, set X = {s(cid:48)}∪T(s(cid:48)), and Y = {o(cid:48)}∪H(s(cid:48)). Set q q q q q q q q q q X = (cid:83)r X andY = (cid:83)r Y . Notethat|X| = |Y| ≤ t3 since|X | = |Y | ≤ tforeveryq = 1,...,r. q=1 q q=1 q q q NoticethatX isarandomset,butY = O(cid:48) ∪H(S(cid:48) ∩S )isdeterministic. Toavoidcumbersomenotation, 3 weuseswap(X,Y)torefertothedistributionofswap-movesthatresultsbytherandomchoicesabove,and call this the interval swap corresponding to S(cid:48) and O(cid:48). We bound the expected change in cost due to this movebelow. Let1(s)betheindicatorfunctionthatis1ifs ∈ S and0otherwise. 3 Lemma3.5 LetS(cid:48) = {s(cid:48),··· ,s(cid:48)} ⊆ S ∪S , r ≤ t2andO(cid:48)beasgivenabove. Leto(cid:48) := center(s(cid:48)) = o , 1 r 0 1 0 1 ˆi where o(cid:48) = nil and D∗(o(cid:48)) = ∅ if s(cid:48) ∈ S . Consider the interval swap swap(cid:0)X = (cid:83)r X ,Y = 0 0 1 0 q=1 q (cid:83)r Y (cid:1)correspondingtoS(cid:48) andO(cid:48),asdefinedabove. Wehave q=1 q r 0 ≤ E(cid:2)MFL(cid:0)(S \X)∪Y(cid:1)−MFL(S)(cid:3) ≤ (cid:88)shift(s(cid:48),o(cid:48))+ (cid:88) 2f∗+ (cid:88) (c∗−c ) q q i j j q=1 P∈Pc(S(cid:48)),i∈P j∈D∗(O(cid:48)) (3) + (cid:88) 2c∗+ (cid:88) 2c∗j +1(s(cid:48)) (cid:88) (f∗+f +c∗). j t 1 ˆi ˆi j j∈D(T(S(cid:48)∩S3)∪(S(cid:48)∩S3)) j∈D(T(S(cid:48)\S3)) j∈D∗(o(cid:48)0) Proof: LetZ bethepathinP orcycleinC suchthatS(cid:48)∪O(cid:48) ⊆ Z. We first bound the increase in movement cost. The interval swap can be viewed as a collection of simultaneous swap(X ,Y ), q = 1,...,r moves. If X = {start(P)} for a random path P ∈ P (s(cid:48)), q q q c q the movement-cost increase can be broken into two parts. We do a shift along P, but move the last initial locationonP tos(cid:48),andthendoshiftonZ froms(cid:48) too(cid:48). Sotheexpectedmovement-costchangeisatmost q q q 1 (cid:88) (cid:0)shift(P)+c(end(P),s(cid:48))(cid:1)+shift(s(cid:48),o(cid:48)) ≤ 1 (cid:88) 2f∗+shift(s(cid:48),o(cid:48)) |P (s(cid:48))| q q q |P (s(cid:48))| i q q c q P∈Pc(s(cid:48)q) c q P∈Pc(s(cid:48)q),i∈P whichisatmost(cid:80) 2f∗+shift(s(cid:48),o(cid:48)). Similarly,if|cap(s(cid:48))| ≤ t,wecanbreakthemovement- cost increase into sPhi∈fPt(cP(s(cid:48)q)),≤i∈P(cid:80) i 2f∗ forqallqP ∈ P (s(cid:48)) and shiftq(s(cid:48),o(cid:48)). Thus, the total increase in i∈P i c q q q 7 movementcostisatmost r (cid:88) (cid:88) shift(s(cid:48),o(cid:48))+ 2f∗. (4) q q i q=1 P∈Pc(S(cid:48)),i∈P Next, we bound the change in assignment cost by reassigning clients in D(cid:98) = D∗(O(cid:48)) ∪ D(X) as follows. We assign each client j ∈ D∗(O(cid:48)) to σ∗(j). If |cap(s(cid:48))| > t, then s(cid:48) ∈/ X. For every client 1 1 j ∈ D(cid:98) \ (D∗(O(cid:48))), observe that either σ∗(j) ∈ Y or σ(σ∗(j)) ∈/ X. To see this, let o = σ∗(j) and s = σ(o). Ifo ∈/ Y thens ∈/ S(cid:48)∩S ;alsos ∈/ T(S(cid:48)),andsos ∈/ X. Soweassignj toσ∗(j)ifσ∗(j) ∈ Y 3 andtoσ(σ∗(j))otherwise;thechangeinassignmentcostofj isatmost2c∗ (Lemma3.2). j Now suppose |cap(s(cid:48))| ≤ t, so s(cid:48) ∈ X. For each j ∈ D(cid:98) \ (D∗(O(cid:48)) ∪ D∗(o(cid:48))), we again have 1 1 o σ∗(j) ∈ Y orσ(σ∗(j)) ∈/ X,andweassignj toσ∗(j)ifσ∗(j) ∈ Y andtoσ(σ∗(j))otherwise. Weassign everyj ∈ D(cid:98) ∩D∗(o(cid:48)0)tosˆi (recallthato(cid:48)0 = oˆi),andoverestimatetheresultingchangeinassignmentcost by (cid:80) (c∗ + f∗ + f ). Finally, note that we reassign a client j ∈ D(T(S(cid:48) \ S )) \ D∗(O(cid:48)) with j∈D∗(o(cid:48)o) j ˆi ˆi 3 probabilityatmost 1 (sinceσ(j) ∈ X withprobabilityatmost 1). Sotakingintoaccountallcases,wecan t t boundthechangeintotalassignmentcostby (cid:88) (c∗−c )+ (cid:88) 2c∗+ (cid:88) 2c∗j +1(s(cid:48)) (cid:88) (f∗+f +c∗). (5) j j j t 1 ˆi ˆi j j∈D∗(O(cid:48)) j∈D(T(S(cid:48)∩S3)∪(S(cid:48)∩S3)) j∈D(T(S(cid:48)\S3)) j∈D∗(o(cid:48)0) In(5),wearedouble-countingclientsinD(cid:0)T(S(cid:48))∪(S(cid:48) ∪S )(cid:1)∩D∗(O(cid:48)). Wearealsooverestimatingthe 3 change in assignment cost of a client j ∈ D(X)∩D∗(o(cid:48)) since we include both the 1(s(cid:48))(c∗ +f∗ +f ) 0 1 j ˆi ˆi 2c∗ term,andthe2c∗ or j terms. Adding(4)and(5)yieldsthelemma. j t Notice that Lemma 3.4 immediately translates to a bound on the assignment cost of the clients in D∗(center(s))fors ∈ S . In contrast, itis quite unclear howLemma 3.5 may beuseful, since the expres- 2 sion(cid:80) (f∗ +f )intheRHSof(3)maybeaslargeast(f∗ +f )(butnomoresince|D∗(o(cid:48))| ≤ t j∈D∗(o(cid:48)0) ˆi ˆi ˆi ˆi 0 if 1(s(cid:48)) = 1) and it is unclear how to cancel the contribution of f on the RHS. One of the novelties of 1 ˆi our analysis is that we show how to amortize such expensive terms and make their contribution negligible by considering multiple interval swaps. We cover each path or cycle Z in t2 different ways using intervals comprisingconsecutivelocationsfromS ∪S . Wethenarguethataveraging,overtheset2 coveringways, 0 1 the inequalities obtained from the corresponding interval swaps yields (among other things) a good bound onthemovement-costofthe(S ∪S )-locationsonZ andtheassignmentcostoftheclientstheyserve. 0 1 Lemma3.6 LetZ ∈ P∪C,S(cid:48) = {s(cid:48),...,s(cid:48)} = S ∩Z,wheres(cid:48) isthenextS -locationonZ afters(cid:48), 1 r 1 q+1 1 q andO(cid:48) = {center(s(cid:48)),...,center(s(cid:48))}. Leto(cid:48) = end(Z)ifZ ∈ P andcenter(s(cid:48))otherwise. Forr ≥ t2, 1 r r 1 (cid:88)(cid:16) (cid:17) (cid:88) (cid:88) (cid:16) (cid:17) 0 ≤ t+1 ·f∗− t−1f + 2f∗+ 1 ·c + t+1 ·c∗ t i t i i t j t2 j i∈Z P∈Pc(S(cid:48)),i∈P j∈D∗(Z∩O) (6) + (cid:88) (c∗−c )+ (cid:88) 2c∗+ (cid:88) 2c∗j. j j j t j∈D∗(O(cid:48)∪{o(cid:48)r}) j∈D(T(Z∩S3)∪(Z∩S3)) j∈D(T(S(cid:48)\S3)) Proof : We first define formally an interval of (at most) t2 consecutive (S ∪S ) locations along Z. As 0 1 before, leto(cid:48) = center(s(cid:48))forq = 1,...,r. Fora pathZ, defines(cid:48) = start(Z)forq ≤ 0ands(cid:48) = nil q−1 q q q for q > r. Also define o(cid:48) = o(cid:48) for q ≤ 0 and o(cid:48) = end(Z) for q ≥ r. If Z is a cycle, we let our indices q 0 q wraparoundandbe mod r,i.e.,s(cid:48) = s(cid:48) , o(cid:48) = o(cid:48) forallq (soo(cid:48) = o(cid:48) = center(s(cid:48))). q qmodr q qmodr r 0 1 For 1 − t2 ≤ h ≤ r, define S(cid:48) = {s(cid:48) ,s(cid:48) ,...,s(cid:48) } to be an interval of length at most t2 on h h h+1 h+t2−1 Z. Define O(cid:48) = {o(cid:48) ,o(cid:48) ,...,o(cid:48) }. Note that we have 1 ≤ |S(cid:48)| = |O(cid:48)| ≤ t2 if Z is a path, and h h h+1 h+t2−1 h h 8 |S(cid:48)| = |O(cid:48)| = t2 ifZ isacycle. Considerthecollectionofintervals,{S(cid:48) ,S(cid:48) ,··· ,S(cid:48)}. Foreach h h −t2+1 −t2+2 r S(cid:48),O(cid:48),where−t2+1 ≤ h ≤ r,weconsidertheintervalswap(X ,Y )correspondingtoS(cid:48),O(cid:48). Weadd h h h h h h theinequalities 1×(3)forallsuchh. Sinceeachs(cid:48) ∈ S(cid:48)∪{s(cid:48)}participatesinexactlyt2 suchinequalities, t2 0 andeachs(cid:48) ∈ S(cid:48) isthestartofonlytheintervalS(cid:48),weobtainthefollowing. h h r (cid:88) 1 (cid:88) 1 0 ≤ ·t2·shift(s(cid:48),o(cid:48))+ ·t2·2f∗ t2 q q t2 i q=0 P∈Pc(S(cid:48)),i∈P + (cid:88) t12 ·t2·(c∗j −cj)+ (cid:88) t12 ·t2·2c∗j + (cid:88) t12 ·t2· 2ct∗j (7) j∈D∗(O(cid:48)∪{o(cid:48)r})) j∈D(T(Z∩S3)∪(Z∩S3)) j∈D(T(S(cid:48)\S3)) (cid:88) 1 (cid:88) + 1(σ(o ))· · (f∗+f +c∗). i t2 i i j i:σ(oi)∈Z j∈D∗(oi) Notice that the S-locations other than s(cid:48) on the s(cid:48) (cid:32) o(cid:48) sub-paths of Z lie in S , and for each i such q q q 2 thatσ(o ) ∈ Z ∩S ,wehavec(o ,σ(o )) ≤ (cid:80) cj+c∗j. Thus,using(1),wehave i 2 i i j∈D∗(oi) t (cid:88)r shift(s(cid:48),o(cid:48)) = (cid:88)(f∗−f )+ (cid:88) c(o ,σ(o )) ≤ (cid:88)(f∗−f )+ (cid:88) cj +c∗j. (8) q q i i i i i i t q=0 i∈Z i:σ(oi)∈Z∩S2 i∈Z j∈D∗(Z∩O) Since1(σ(o)) = 1meansthatσ(o) ∈ S ,andso|D∗(o)| ≤ t,wehave 3 (cid:88) (cid:88) fi∗+fi+c∗j ≤ (cid:88)(cid:16)fi∗+fi +(cid:80)j∈D∗(oi)c∗j(cid:17) ≤ (cid:88) fi∗+fi + (cid:88) c∗j. (9) t2 t t2 t t2 i:σ(oi)∈Z∩S3j∈D∗(oi) i∈Z i∈Z j∈D∗(Z∩O) Incorporating(8)and(9)in(7),andsimplifyingyieldsthedesiredinequality. For a path or cycle Z where |S ∩Z| < t2, we obtain an inequality similar to (6). Since we can now 1 coverZ withasingleinterval,weneverhaveaclientj suchthatnoneofσ(j), σ∗(j), σ(σ∗(j))areinour newsetoffinallocations. Sotheresultinginequalitydoesnothaveany fi∗+fi + c∗j terms. t t2 Lemma3.7 LetZ ∈ P∪C,S(cid:48) = {s(cid:48),...,s(cid:48)} = S ∩Z,wheres(cid:48) isthenextS -locationonZ afters(cid:48), 1 r 1 q+1 1 q andO(cid:48) = {center(s(cid:48)),...,center(s(cid:48))}. Leto(cid:48) = end(Z)ifZ ∈ P andcenter(s(cid:48))otherwise. Forr(cid:48) < t2, 1 r r 1 0 ≤ (cid:88)(f∗−f )+ (cid:88) 2f∗+ (cid:88) cj +c∗j i i i t i∈Z P∈Pc(S(cid:48)),i∈P j∈D∗(Z∩O) (10) + (cid:88) (c∗−c )+ (cid:88) 2c∗+ (cid:88) 2c∗j. j j j t j∈D∗(O(cid:48)∪{o(cid:48)r}) j∈D(T(Z∩S3)∪(Z∩S3)) j∈D(T(S(cid:48)\S3)) Proof: TheproofissimilartothatofLemma3.6,exceptthatsincewecancoverZ withasingleinterval, weonlyneedtoconsiderasingle(multi-location)swap. Weconsidertwocasesforclarity. 1. Z is a path, or r > 0. As before, let o(cid:48) = center(s(cid:48)) for q = 1,...,r. If Z is a path, define q−1 q s(cid:48) = start(Z). IfZ isacycle,weagainsets(cid:48) = s(cid:48) , o(cid:48) = o(cid:48) forallq. Considertheinterval 0 q qmodr q qmodr swap (X,Y) corresponding to S(cid:48) ∪{s(cid:48)},O(cid:48) ∪{o(cid:48)}. The inequality generated by this is similar to (3) 0 r exceptthatwedonothaveany(f∗+f +c∗)termssinceforclientj ∈ D(X)∪D∗(Y),wealwayshave ˆi ˆi j thateitherσ∗(j) ∈ Y orσ(σ∗(j)) ∈/ X. Thus,(3)translatestothefollowing. r 0 ≤ (cid:88)shift(s(cid:48),o(cid:48))+ (cid:88) 2f∗+ (cid:88) (c∗−c )+ (cid:88) 2c∗+ (cid:88) 2c∗j. q q i j j j t q=0 P∈Pc(S(cid:48)),i∈P j∈D∗(O(cid:48)∪{o(cid:48)r}) j∈D(T(Z∩S3)∪(Z∩S3)) j∈D(T(S(cid:48)\S3)) 9 Substituting (cid:80)r shift(s(cid:48),o(cid:48)) ≤ (cid:80) (f∗ −f )+(cid:80) cj+c∗j as in (8) yields the stated in- q=0 q q i∈Z i i j∈D∗(Z∩O) t equality. 2. Z isacyclewithr = 0. Here,Lemma3.3yields0 ≤ (cid:80) (f∗ −f )+(cid:80) cj+c∗j (whichis i∈Z i i j∈D∗(Z∩O) t thespecialcaseoftheearlierinequalitywiths(cid:48) = nil = o(cid:48), S(cid:48) = O(cid:48) = Z ∩S = ∅). 0 r 3 ProofofTheorem3.1: Weconsiderthefollowingsetofswaps. (cid:0) (cid:1) A1. Foreverys ∈ S ,themoveswap {s}∪T(s),cap(s) . 2 A2. ForeverypathorcycleZ with|Z∩S | ≥ t2,the 1-weightedintervalswapsasdefinedinLemma3.6. 1 t2 A3. ForeverypathorcycleZ with|Z ∩S | < t2,theintervalswapdefinedinLemma3.7. 1 Notice that every location o ∈ O is swapped in to an extent of at least 1 and at most 2. (By “extent” we mean the total weight of the inequalities involving o.) To see this, suppose first o = end(Z) for some path Z, then o is involved to an extent of 1 in the interval swaps for Z in A2 or A3. In this case, we say that the interval swap for Z is responsible for o. Additionally, if s = σ(o) ∈ S , then o belongs to the 2 multi-swap for s in A1, else if s ∈ S then o is part of the interval swap for the path/cycle containing s in 3 A2orA3. Nowsupposeo = center(s). Ifs ∈ S ,thenoisincludedinthemulti-swapforsinA1. Wesay 2 thatthismulti-swapisresponsibleforo. Ifs ∈ S ,thenoisincludedintheintervalswapforthepath/cycle 1 containingsinA2orA3,andwesaythatthisintervalswapisresponsibleforo. Consider the compound inequality obtained by summing (2), (6), and (10) corresponding to the moves considered in A1, A2, and A3 respectively. The LHS of this inequality is 0. We now need to do some bookkeeping to bound the coefficients of the f∗,f ,c∗,c terms on the RHS. We ignore o(1) coefficients i i j j like 1, 1 in this bookkeeping, since for a given {f∗,f ,c∗,c } term, such coefficients appear in only a t t2 i i j j constant number of inequalities, so they have an o(1) effect overall. Let F and C denote respectively the movement-andassignment-costofthelocaloptimum. Contribution from the c∗ and c terms. First, observe that for each o ∈ O, we have labeled exactly one j j move involving o as being responsible for it. Consider a client j ∈ D(s)∩D∗(o). Observe that c∗ or c j j termsappear(withaΘ(1)-coefficient)inaninequalitygeneratedbyamoveif(i)j isreassignedbecausethe moveisresponsibleforo;or(ii)sisswappedout(toanextentof1)bythemove(sothisexcludesthecase wheres ∈ T(s(cid:48)), s(cid:48) ∈ S \S andthemoveistheintervalswapforthepathcontainings(cid:48)). If(i)applies, 1 3 then the inequality generates the term (c∗ −c ). If (ii) applies then the term 2c∗ appears in the inequality. j j j Finally,notethatthereareatmosttwoinequalitiesforwhich(ii)applies: – Ifs = start(Z) ∈ S ,then(ii)appliesfortheinterval-swapmoveforZ. Ifs(cid:48) = σ(end(Z)) ∈ S ∪S , 0 2 3 then (ii) again applies, for the multi-swap move for s(cid:48) if s(cid:48) ∈ S , or for the interval swap for the path 2 containings(cid:48) ifs(cid:48) ∈ S . 3 – Ifs ∈ S ∩S ,then(ii)appliesfortheintervalswapforthepathcontainings. 1 3 – Ifs ∈ S ,then(ii)appliesforthemulti-swapmovefors. 2 So overall, we get a 5c∗ −c contribution to the RHS, the bottleneck being the two inequalities for which j j (ii)applieswhens ∈ start(Z)andσ(end(Z)) ∈ S ∪S . 2 3 Contribution from the f∗ and f terms. For every i ∈ F, the expression (f∗ − f ) is counted once in i i i i the RHS of the inequality (6) or (10) for the unique path or cycle Z containing i. The total contribution of all these terms is therefore, F∗ − F. The remaining contribution comes from expressions of the form (cid:80) 2f∗ on the RHS of (2), (6), and (10). The paths P involved in these expressions come from P P(S∈P)c(∪s)(cid:0),i(cid:83)∈P i P (Z ∩S )(cid:1) ⊆ P. Therefore,thetotalcontributionofthesetermsisatmost2F∗. c 2 Z∈P∪C c 3 Thus,weobtainthecompoundinequality 0 ≤ (cid:0)5+o(1)(cid:1)C∗+(cid:0)3+o(1)(cid:1)F∗−(cid:0)1−o(1)(cid:1)(F +C) (11) 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.