ebook img

Local dynamic modeling with self-organizing feature maps PDF

136 Pages·1996·5.1 MB·English
by  WangLudong
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Local dynamic modeling with self-organizing feature maps

LOCALDYNAMICMODELING WITHSELF-ORGANIZINGFEATUREMAPS By LUDONGWANG ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENTOFTHE REQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 1996 ACKNOWLEDGEMENTS IwouldliketothankDr.JoseC.Principe,mymajoradvisor,forhisguidance, support,motivation,andpatience,andforhelpwiththecompletionofthisdissertation.I amextremely grateful tothe members ofmy supervisory committee. Dr. Donald G. Childers,Dr.FredrickJ.Taylor,Dr.JohnM.M.Anderson,Dr.KermitN.Sigmon,Dr.Paul E.Ehrlich,fortheircontributionstomyresearchandtothepreparationandreviewofthis manuscript.ImustalsothankmanyCNELfellowstudentswhohaveenrichedmylife duringthisprogram.SpecialthanksgotoJohnFisherandSamelCelebi. Thanksareduetomyfamilyfortheirencouragement.Finally,Iwouldliketothank mylovingwife.Hong,forhersupport,andbeautifuldaughter,Amy,formakingmylife special. ii TABLEOFCONTENTS page ACKNOWLEDGEMENTS ii ABSTRACT vi CHAPTERS 1 INTRODUCTION 1 1.1Motivations 1 1.2ResearchOutlineandObjectives 2 1.3OverviewoftheDissertation 5 2 NONLINEARDYNAMICMODELING 6 2.1DynamicSystemsandSignals 7 2.2SignalAnalysis:LinearandNonlinearModels 8 2.2.1LinearModelsandLimitations 8 2.2.2AnalysisofLinearandNonlinearSystems 10 2.3NonlinearDynamicModeling 11 2.3.1GlobalModels 13 2.3.2LocalModels 15 2.4DynamicalInvariantsinModeling 17 2.4.1DynamicsReconstructionandCorrelationDimension 18 2.4.2TheLyapunovExponents 19 2.4.3ModelValidation 21 3 SELF-ORGANIZINGFEATUREMAP 23 3.1Introduction 23 3.2FormationofSOFM 24 iii 3.2.1Structures 24 3.2.2TheAlgorithmofKohonenModel 26 3.2.3Convergence 29 3.3LocalizedNeuralRepresentationofSignals 31 3.3.1PropertiesofSOFM 31 3.3.2SimulationsofSOFMwithTemporalSignalProcess 39 3.4ApplicationPotential 44 4 NON-LINEARTIMESERIESMODELINGWITHSOFM 47 4.1Introduction 47 4.2State-DependentARModels 48 4.2.1NonlinearAutoregressiveModels 48 4.2.2State-DependentPredictionofNonlinearProcesses 50 4.3LocalLinearApproximationofGlobalDynamicsandLimitation ... 51 4.4SOFM-BasedLocalLinearModelingNetworks 55 4.4.1Methodology 55 4.4.2Architecture 56 4.4.3NetworkConstruction 57 5 METHODOLOGYOFLEARNINGEQUATIONS 60 5.1PropertiesofSOFM-BasedLocalModeling 60 5.2ImprovedEstimationofLocalLinearModels 62 5.3Dynamic-OrientedRepresentations 63 5.3.1TheConstraintsofSOFMLearningProcess 64 5.3.2DynamicLearningRule 65 5.4TheWeightedLeast-SquaresSolution 69 6 EXPERIMENTALRESULTS 73 6.1ModelingofNumericallyGeneratedTimeSeries 75 6.1.1Mackey-GlassTimeSeries 77 6.1.2LorenzTimeSeries 88 6.1.3ApproximationofSeamlessPatchingofLocalModels 95 6.2ConsistencyoftheConstructedModels 98 6.2.1Consistencyvs.DifferentInitialSOFMStates 98 6.2.2TemporalConsistency 102 6.3ModelingReal-WorldSignals 104 6.3.1LaserTimeSeries 105 iv 6.3.2EEGSignal 108 6.3.3SunspotTimeSeries 108 7 CONCLUSIONSANDFUTURERESEARCH 114 7.1Conclusions 114 7.2FutureResearch 117 REFERENCES 119 BIOGRAPHICALSKETCH 127 V AbstractofDissertationPresentedtotheGraduateSchooloftheUniversityofFloridain PartialFulfillmentoftheRequirementsfortheDegreeofDoctorofPhilosophy LOCALDYNAMICMODELING WITHSELF-ORGANIZINGFEATUREMAP By LudongWang December1996 Chairman:Dr.JoseC.Principe MajorDepartment:ElectricalandComputerEngineering Chaotic signals are associated with autonomous response ofcertain nonlinear dynamicalsystems.Whiletheyaredeterministicwithfewdegreesoffreedom,chaotic signalsarenotpredictableinthelongterm.Theyclearlyhaveconsiderablymorestructure thancanbeinferredfromandexploitedbytraditional stochasticmodelingtechniques. Consequentlyitisimportanttodevelopnewsignalprocessingtechniquesthatarematched tothespecialcharacteristicsofthisclassofsignals. Inthisresearch,afinitesetoflinearlocalmodelsisestablishedasafeasibleand effectiveimplementationofdynamicmodeling.Asaself-organizingfeaturemap(SOFM) isusedasthemodelinginfrastructure, the method iscalled SOFM-based local linear modelingnetwork. Thepreviousworkonlocalmodelsonly focusesoninterpolatinglocaldatafor short-termprediction.Anexampleisstate-dependentfunctionalmappingwhichdoesnot considerdeducingtheequationsofmotion.Theaimoftheproposedmodelingmethodis toderiveafinitesetoflocallinearmodelstoapproximatetheglobaldynamics.These modelsareconstructedwithspatialconstraintswhilematchingthedynamicsofasignalin vi thetemporalsense.Thisspatial-temporalarchitecturerequiresfewerassumptionsaboutthe underlyingdynamics. The SOFM constructed with Kohonen's learning law is a localized neural representationofsignals.WeappendedanewlinearlayertotheSOFMwhichistrainedto approximatethetangentspacetothedynamicsrepresentedbythelocalneuralfield.The useofaneighborhoodfunctionimposesastrongstatisticalconstraintovertheconverged neuralfield,suchthattheirregularspacingoflocaldatacanbesmoothedout.Thisis significanttothelocalmodelingmethodasagivensignalisusuallyoffinitelength.Based onthisstructure,theconstructedlocallinearmodelsarenottotallyindependentofeach other, whichhelps toreduce the discontinuity between them. On the otherhand, the statisticaldensitymatchingpropertymakesSOFMagoodvectorquantizationprocedure. Thisisnotanoptimalstructurefortheoverallpurposeofdynamicmodeling.Thereforea modifiedKohonenlearningruleisproposedasanewtrainingprocedureoftheemployed SOFM.Asthepredictionerrorisinvolvedtoreflectthelocaldynamicfluctuation,this procedureisthuscalleddynamiclearning.Withthisprocedure,theconvergedneuralfield becomesadynamic-orientedrepresentationofthesignal. TheproposedSOFM-basedmodelingschemehasbeenappliedtobothsynthetic andreal-worldsignals.Experimentsdemonstratethatthismethodiscapableoffaithfully capturingtheunderlyingdynamicsofchaoticsignals. Theoverallstructureoftheproposedmethodisasignificantextensionofthelocal linearmodelingtechniques. It also representsa new researchdirectiontoexplore the potentialofthevigorousself-organizingfeaturemap. vii CHAPTER 1 INTRODUCTION 1.1Motivations Temporalpatternrecognition,systemcontrol,signalprediction,andchaoticdata analysisshareacommonproblem:deducingequationsofmotionfromobservationsof time-dependentdata.Eachofthemseekstomodelthephysicalworldwithacertaingoalin mind. These models encapsulate the data complexity in a compact, algorithmic specificationproducingavastdatareduction.Thereforemodelingcanbedefinedasa processtoextracttheunderlyingdynamicmodelfromagivensignal. Inconventionalsignalprocessingawiderangeofapproacheshavebeendeveloped formodelingsignalsthataredeterministicandpredictable.Thesignalsaregenerallytaken astherealizationofsomestochasticprocess,andtheunderlyingsystemismodeledas linear[92].Insuchamodelingscheme,therandominputproducestheuncertaintyinthe systemoutput. Chaoticsignalsareassociatedwiththeautonomousresponseofcertainnonlinear dynamical systems. Without any random input, the output ofsuch systems exhibits complex behavior and possesses noise-like spectra. These systems, named chaotic dynamicalsystems[27],areubiquitous,e.g.,laserbeams,biologicalsystems,astronomical motions,weatherpatterns,fluidflows,andelectriccircuits,etc.[20][32][67][93].Asthe uncertaintyinitsoutputoriginatesfromthesystemdynamicsinsteadofanexternaldriving force,theyclearlypossessconsiderably more structurethancan be inferredfromand exploitedbytraditionalstochasticmodelingtechniques. Tomodelthechaotictimeseries,manytechniqueshavebeendeveloped.Theycan generallybeclassifiedasglobalandlocalmodels.Globalmodelsareconstructedonceand 1 2 fitallthestatespace,whilelocal modelsrepresent local regions. Structureinchaotic attractors tends to be very intricate and nonuniform. Depending on the functional representation, global models have difficulty mimicking such systems adequately. Localizedrepresentationscanchartoutthenuancesofchaoticmorphologyandprovidean atlasfortheentirestatespace.Amongthelocalmethods,linearmodelsareprovedtobe computationallycost-effective. Theself-organizingfeaturemap(SOFM)constructedwithKohonen'slearninglaw [52]isnormallyutilizedforfeatureextraction. Itischaracterizedbytheformationofa topographicmapoftheinputpatterns,inwhichthespatiallocationoftheneuronsinthe outputneuralfieldcorrespondtointrinsicfeaturesoftheinputpatterns.Asacomputational map,itconstitutesabasicbuildingblockforinformationprocessing.Thefeaturemapso derivedprovidesabetterrepresentationofthelocalinformation. Thus,exploringtheapplicationoflocallinearmodelsinglobaldynamicmodeling, andutilizingSOFMasthemodelinginfrastructureforthispurpose,composethemotiva- tionofthisresearch. 1.2ResearchOutlineandObjectives So farthe research on the method and application oflocal linear models is restrictedtotheforecastingofchaoticsignals.Inthisscenario,alinearpredictivemodelis estimatedasthelocaldynamicmapbasedonthenearestneighborsofthecurrentstate, andthepredictionisthusobtainedbysimplefunctionevaluation.Duetothefactthatcha- otictimeseriesisnotpredictableinthelong-termsense,smallshort-termpredictionerror isthegoalofthisscenario.Undertheassumptionthatthestatedynamicsissmoothand sufficientdatasamplesareavailable,thismethodcangenerallyprovideagoodpredicting performance. Capturingthedynamics,i.e.,thelongtermbehaviorofthesystem,isdefinitelya significantextensionofthelocallinearforecastingscenario.Thegoalistofitasetoflocal linearmodelstothegivensignalreconstructedinthestatespacesuchthatautonomous outputofthe constructed structure exhibits similardynamic behavior. However, such attemptshavebeenhinderedbysomeconcerns[23].Dependingonthepartitioningand scales,piecewiselinearequationsofmotionmayexhibitperiodicbehaviorwhentheorig- inaldynamicsischaoticandviceversa.Piecewiselineardynamicsareconsideredasvio- latingthephysicallymotivatedhypothesisofsmoothdynamicalsystems.Mostphysical processesdonotexhibitarbitrarilyfastchangesintheirfirstderivatives.Moreoverthe establishedsetoflocallinearmodelsgenerallymaynotbeadiscontinuousfunctional map,whichcanleadtoundesiredbehavioritisiteratedasanautonomoussystem. Inthisresearch,theaboveconcernsarereconsideredinthefollowingaspects.As longasthelocallinearmodelscanexhibitchaoticbehaviorwhentheoriginaldynamicsis periodicasshowedintheinvestigationbyCrutchfield,etal.[23],itisreasonabletoexpect thatthestructureoflocallinearmodelsiscapableofpossessingchaoticdynamics.Inthe contextofchaoticdynamics,thelackofsmoothcontinuationmaydegradetheshort-term predictionperformance.However,itisnotsufficienttoconcludethatafaithfulapproxima- tionofglobaldynamicsisimpossibleintermsofafinitesetoflocallinearmodels.Finally thediscontinuityproblemmaybereducedtoasufficientextent,ifnoteliminated,such thattheestablishedlocallinearmodelspiecedtogetherasawholemaynotbehinderedto approximatetheoriginaldynamics. Torealizethescenariooflocallinearmodeling,itisproposedheretoutilizethe SOFMasthemodelinginfrastructure.WhileSOFMisalocalizedneuralrepresentationof theinput,itisconstructedintheglobalsenseviathecompetitivelearningprocess.The locallinearmodelsaredirectlyfittedfromtheconstructedSOFMmap.Twomajorissues willbeinvestigated:a)CantheneuronsofeachlocalsegmentintheSOFMneuralfield collectivelybearmorereliableinformationaboutthelocaldynamics?b)Canall local dynamicsextractedfromtheindividuallocalsegmentscollectivelyrepresenttheglobal dynamicsofthegivensignal?

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.