JournalofBiomechanicsxxx(2017)xxx–xxx ContentslistsavailableatScienceDirect Journal of Biomechanics journal homepage: www.elsevier.com/locate/jbiomech www.JBiomech.com Local displacement and strain uncertainties in different bone types by digital volume correlation of synchrotron microtomograms Marco Palancaa, Andrew J. Bodeyb, Mario Giorgic, Marco Vicecontid, Damien Lacroixd, Luca Cristofolinia, Enrico Dall’Arac,⇑ aDepartmentofIndustrialEngineering,SchoolofEngineeringandArchitecture,AlmaMaterStudiorum-UniversitàdiBologna,ViaTerracini24/28,Bologna40131,Italy bDiamondLightSource,OxfordshireOX110QX,UK cDepartmentofOncologyandMetabolismandINSIGNEOInstituteforInSilicoMedicine,UniversityofSheffield,SirFrederickMappinBuilding,PamLiversidgeBuilding, SheffieldS13JD,UK dDepartmentofMechanicalEngineeringandINSIGNEOInstituteforInSilicoMedicine,UniversityofSheffield,SirFrederickMappinBuilding,PamLiversidgeBuilding, SheffieldS13JD,UK a r t i c l e i n f o a b s t r a c t Articlehistory: Understandingbonemechanicsatdifferenthierarchicallevelsisfundamentaltoimprovepreclinicaland Accepted9April2017 clinicalassessmentsofbonestrength.DigitalVolumeCorrelation(DVC)istheonlyexperimentalmea- Availableonlinexxxx surementtechniqueusedformeasuringlocaldisplacementsandcalculatinglocalstrainswithinbones. Todate,itscombinationwithlaboratorysourcemicro-computedtomography(LS-microCT)datatypically Keywords: leadstohighuncertainties,whichlimititsapplication.Here,thebenefitsofsynchrotronradiationmicro- Synchrotron computedtomography(SR-microCT)forDVCarereported.Specimensofcorticalandtrabecularbovine microCT boneandmurinetibiae,wereeachscannedunderzero-strainconditionswithaneffectivevoxelsizeof Digitalvolumecorrelation 1.6lm.Inordertoconsidertheeffectofthevoxelsize,analyseswerealsoperformedondownsampled Bone imageswithvoxelsizeof8lm.Toevaluatedisplacementandstrainuncertainties,eachpairoftomo- Strain Uncertainties gramswascorrelatedusingaglobalDVCalgorithm(ShIRT-FE).Displacementrandomerrorsfororiginal SR-microCT ranged from 0.024 to 0.226lm, depending on DVC nodal spacing. Standard deviation of strainerrorswasbelow200microstrain(ca.1/10ofthestrainassociatedwithphysiologicalloads)for correlationsperformedwithameasurementspatialresolutionbetterthan40lmforcorticalbovinebone (240lmfordownsampledimages),80lmfortrabecularbovinebone(320lmfordownsampledimages) and murine tibiae (120lm for downsampled images). This study shows that the uncertainties of SR-microCT-based DVC, estimated from repeated scans, are lower than those obtained from LS-microCT-basedDVConsimilarspecimensandlowenoughtomeasureaccuratelythelocaldeforma- tionatthetissuelevel. !2017TheAuthor(s).PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/). 1.Introduction 2015)invivo.CombinationofFEmodelsandmathematicalmodels of bone remodelling (Lerebours et al., 2015) can estimate bone Musculoskeletal pathologies, such as osteoporosis or bone changesovertime.However,firstweneedtounderstandhowwell metastasis, are associated with alterations of bone structures at the structural FE models predict the local 3-dimensional strain different spatial scales. Assessment of bone quality (Bouxsein, field,whichcanbe usedtoestimatethe localcell activityonthe 2003)andmineraldensityhavebecomekeytostudyingtheeffects bonestructuralunits(Levchuketal.,2014). ofpathologiesandrelatedtreatmentsatdifferentbonehierarchical ApossiblewayofvalidatingtheFEmodelsatthetissuelevelis levels.Subject-specificcomputedtomographybasedfiniteelement byusingdigitalvolumecorrelation(DVC)(Bayetal.,1999).DVCis (FE)analyseshavebeenusedtoestimatebonemechanicalproper- afull-field,contactlesstechniquethatprovidesbothdisplacement ties(Dall’Araetal.,2013;Dall’Araetal.,2012;Schileoetal.,2008) andstrainmapsinsidebonespecimensviathecomparisonof3D andtheeffectofinterventions(Keavenyetal.,2014;Zyssetetal., imagesacquiredin,for example,theunloadedand loadedcondi- tions(GrassiandIsaksson,2015).DVCapproachesbasedon‘labo- ratory source’ micro-computed tomography (LS-microCT) can Correspondingauthor. measuredisplacementsinboneswithsub-voxelaccuracyandpre- ⇑ E-mailaddress:e.dallara@sheffield.ac.uk(E.Dall’Ara). http://dx.doi.org/10.1016/j.jbiomech.2017.04.007 0021-9290/!2017TheAuthor(s).PublishedbyElsevierLtd. ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/). Pleasecitethisarticleinpressas:Palanca,M.,etal.Localdisplacementandstrainuncertaintiesindifferentbonetypesbydigitalvolumecorrelationof synchrotronmicrotomograms.J.Biomech.(2017),http://dx.doi.org/10.1016/j.jbiomech.2017.04.007 2 M.Palancaetal./JournalofBiomechanicsxxx(2017)xxx–xxx cision(ca.1/10–1/20oftheeffectivevoxelsize)(Chenetal.,2017; longaxescorrespondedtotherotationaxisduringdatacollection.Eachspecimen Zaueletal.,2006).However,currentLS-microCT-basedDVCcannot wasscannedtwiceunderzero-strainconditionsandwithoutanyrepositioning. Twocubicvolumesofinterest(VOIs),withsidelengthsof1000voxels,were measure strain in bone with enough precision to validate the croppedfromthemiddleofeachcorticalandtrabecularspecimen(Fig.1d,e,g, modeloutputwithinabonestructuralunit(e.g.atrabeculaoran h)usingImageJ-v1.49(Rasband,NIH,Maryland,USA,http://imagej.nih.gov/ij/).In osteon)(Dall’Araetal.,2014;Robertsetal.,2014).Todate,thetyp- ordertoincludebothtrabecularandcorticalbone,onecubicVOI(Fig.1f,i)was icalmeasurementuncertaintyenabledusingDVC todiscriminate croppedfromtheproximalpartofeachmurinetibia. InordertoallowcomparisonbetweentheresultsobtainedfromotherDVC the pre- or post-yielding conditions in vertebra bodies scanned approaches,theimagedatasetsusedinthepresentstudyareavailablebycontact- with LS-microCT with a voxel size of approximately 35–40lm ingthecorrespondingauthor(resultscanbefoundathttps://doi.org/10.15131/shef. (Danesietal.,2016;Husseinetal.,2012;Tozzietal.,2016).Infact, data.4865300).. as bone yields at a deformation of 7000–10,000 microstrain InordertoevaluatetheDVCerrorsonlywherebonetissueispresent,masked (Bayraktar et al., 2004), a measurement uncertainty of approxi- images were created: after applying a Gaussian filter (r=4) to reduce high- frequencynoise,imagesegmentationwasperformed,followedbya single-level mately700microstraincouldbeacceptableforclassifyingregions thresholdinthevalleybetweenthefirsttwopeaksofthegreyscalehistogram. startingtoyieldfromthosestillintheelasticregime.Afterexten- Thethresholdwasadjustedvisuallybycomparingthesegmentedandgreyscale sive optimisation, DVC based on LS-microCT has reached accept- images.Thesebinaryimages(0forbackground,1forbonevoxels)werethenused able accuracyand precision,onthe orderof200microstrain,but alsotomasktheoriginalbovinetrabecularboneandmurinetibiaVOIs(Fig.1j,k). ForeachVOIthesolidvolumefraction(solidvolume/totalvolume,SV/TV),was onlyifastrongcompromisewithmeasurementspatialresolution determinedastheratiobetweenthenumberofbonevoxelsandthetotalnumberof is accepted (measurements every 500–600lm) (Dall’Ara et al., voxelsintheVOI,usingtheImageJplug-inBoneJ(Doubeetal.,2010). 2014;Palancaetal.,2015).Unfortunately,duetotheheterogeneity The potential benefit associated with SR-microCT could be due both to the ofbonetissue,DVCbasedonLS-microCTcannotbeusedtoobtain signal-to-noiseratioandthevoxelsize.Inordertoevaluatetheeffectofthevoxel accuratemeasurementsofstrainwithinthetypicalelementsizeof sizeonthestrainuncertainties,alloriginal(notmasked)VOIsweredownsampled toavoxelsizeof8lm(byaveragingthevoxelsgrey-values)usingImageJ.Witha microCT-basedFEmodels(ontheorderof10–20lm). similarapproach,downsampledbinarymaskswerecreatedfromtheoriginalmasks InordertoreducethestrainmeasurementerrorsofDVCwecan fortrabecularboneandmurinetibiaeandassigning1toanyvaluegreaterthan0. trytoimprovetheinputimagesby,e.g.,usingsynchrotronradia- tion microCT (SR-microCT). However, it is currently not clear if, 2.2.DVCprotocol andtowhatextent,betterqualitytomogramswouldimprovethe accuracyofDVCstrainmeasurements.Totheauthors’knowledge, TheadoptedDVCapproach(ShIRT-FE)wasacombinationofaglobaldeform- theonlypublishedstudythatcharacterisedtheaccuracyofstrains able image registration algorithm (Sheffield Image Registration toolkit, ShIRT computedwithDVCbasedonSR-microCTofbonefocusedonthe (Barber and Hose, 2005; Barber et al., 2007)) that computes the displacements maps,andafiniteelement(FE)softwarepackageforthecalculationandvisualiza- crackpropagationinmurinefemora(Christenetal.,2012).How- tionofthestrains(Dall’Araetal.,2014;Palancaetal.,2015;Palancaetal.,2016; ever,inthatstudytheprecisionofthemethodwasassessedonly Tozzietal.,2017).Briefly,agridwithselectablenodalspacing(NS)wassuperim- on virtually moved or stretched images, which has been shown posedontheVOIsfrompairsofrepeatedscans.ShIRTcomputesthedisplacements to underestimate the realerror inducedby image noiseand arti- atthenodesofthegridbysolvingtheregistrationequation(BarberandHose,2005; facts (Dall’Ara et al., 2014). Therefore, the real potential of SR- Barberetal.,2007).Thegridisthenconvertedinto8-nodeshexahedralFEmesh,the computeddisplacementsareassignedasboundaryconditions(Fig.2),theFEsoft- microCT based DVC for bone applications is still partially unex- warepackageisusedtodifferentiatethedisplacementfield(ANSYSMechanical plored as the potential benefits of using high-quality tomograms APDLv.15.0,Ansys,Inc.,USA),andthesixcomponentsofstrainarecomputedat thatallowresolvingmicro-featuressuchasosteocytelacunaeare eachnode.Asithasbeendemonstratedthatnodalspacing(NS)affectsuncertain- notyetknown. tiesofthemethod(Dall’Araetal.,2014),aseriesofNSvalueswasused(from10 to300voxels,equivalentto16.0–480.0lm)foreverypairofrepeatedtomograms TheaimofthisstudywastoquantifytheimprovementthatSR- (Table1). microCTdatacouldbringtoglobalDVCfordifferentbonetissues, Forthebovinetrabecularboneandmurinetibiasamples,whichshowedlower by investigating the compromise between measurement spatial SV/TVthanthebovinecorticalsamples(approximately96%forcorticalboneversus resolutionanduncertainties. approximately26%fortrabecularboneandmurinetibia,Fig.1),twoapproaches weretakeninordertoinvestigatetheeffectoftheinclusionofthemarrowregions duringtheregistration:eitherthewholeVOI(‘unmasked’),oronlythepartsofthe VOI within the mask (‘masked’) were registered. In both cases (unmasked and 2.Materialsandmethods masked)thecellsofthemeshwithallnodesoutsidethemaskwereignoredand theerrorswereaveragedonlyintheremainingnodes(Fig.2),inordertoaccount 2.1.Specimenpreparation,tomographyandimageprocessing onlyfortheerrorswithinthebonetissue.Thesameprotocolwasappliedalsoto thedownsampledimagesusingthedownsampledmasks. In order to investigate the effect of microstructure on measurement errors, three different tissue types were used (Fig. 1a–c): four 3mm in diameter and 12mminlengthcorticalbonecoresobtainedfromthediaphysisofafreshbovine 2.3.Quantificationoferrors femur(18monthsold,killedforalimentarypurposes);three8mmindiameterand 12mminlengthtrabecularbonecoresobtainedfromthegreatertrochanterofthe The systematic error for the displacements could not be quantified, due to samefemur;andfourpairedtibiae,whichhadbeenusedinapreviousstudy(Lu unknownnano-movementsofthemovingpartsofthescanner.Conversely,asthe etal.,2015),obtainedfromtwo14-weekoldfemaleC57BL/6Jmice(HarlanLabora- testwasbasedonazero-straincondition,anynon-zerovaluesofstrainwerecon- tories,Bicester,UK).Allmachiningwasperformedunderconstantwaterirrigation. sideredaserror,andbothprecisionandaccuracycouldbeestimated.Thefollowing Thesofttissuesaroundthetibiaewerecarefullyremovedwithascalpel.Allspec- parameterswerecomputedforeachregistration: imens were dehydrated overnight at room temperature and then embedded in acrylicresinwithoutboneinfiltration. - Randomerrorforthedisplacement:standarddeviation(SD)ofeachcomponent Tomography was performed at the Diamond-Manchester Imaging Beamline ofdisplacement,asin(Benoitetal.,2009;Madietal.,2013;Palancaetal.,2015; l13-2ofDiamondLightSource,UK.Afiltered(950lmC,2mmAl,20lmNi)poly- Rouxetal.,2008); chromatic‘pink’beam(5–35keV)ofparallelgeometrywasusedwithanundulator - Meanabsoluteerror(MAER):averageoftheaverageoftheabsolutevaluesof gapof5mm.Thepropagationdistancewasapproximately10mm.Tomography thesixcomponentsofstrainineachnode,referredas‘‘accuracy”in(Liuand datawereacquiredusingapco.edge5.5detector(PCOAG,Germany)coupledto Morgan,2007); a750lm-thickCdWO4scintillator,withvisualopticsproviding4!totalmagnifica- - Standarddeviationoferror(SDER):SDoftheaverageoftheabsolutevaluesof tion. This lead to an effective pixel size of 1.6lm and a field of view of thesixcomponentsofstrainineachnode,referredas‘‘precision”in(Liuand 4.2 3.5mm.4001projectionimageswerecollectedatequally-spacedanglesover Morgan,2007); ! 180"ofcontinuousrotation,withanexposuretimeof53ms.Thetotalscanning - Systematicerrorforeachcomponentofstrain:averageoftherespectivecom- timewasapproximatelyfourminutes.Theprojectionimageswereflatanddark ponentofstrainontheevaluatednodes,asin(Gillardetal.,2014;Palanca correctedpriortoreconstructionusingthetomographicreconstructionmoduleof etal.,2016); Dawnv1.7(Ashtonetal.,2015;Bashametal.,2015),whichincorporatedringarte- - Randomerrorforeachcomponentofstrain:SDoftherespectivecomponentof factsuppression(Titarenkoetal.,2010).Samplesweremountedsuchthattheir strainontheevaluatednodes,asin(Gillardetal.,2014;Palancaetal.,2016); Pleasecitethisarticleinpressas:Palanca,M.,etal.Localdisplacementandstrainuncertaintiesindifferentbonetypesbydigitalvolumecorrelationof synchrotronmicrotomograms.J.Biomech.(2017),http://dx.doi.org/10.1016/j.jbiomech.2017.04.007 M.Palancaetal./JournalofBiomechanicsxxx(2017)xxx–xxx 3 Fig.1. Typicalspecimenforeachtissuetype.Fromtoptobottom:3-dimensional(3D)representationofatypicalspecimen;3DrepresentationoftypicalVOI;2-dimensional (2D)cross-sectionthroughthemiddleofeachVOI;masked2Dcross-sections;solidvolumefraction(SV/TV)values(median±standarddeviation).Thesidelengthofeach crosssectionis1000voxels,equivalentto1600lm. The medianandstandard deviation werecomputed withineachsamplefor a NS of 10, Table2). The maximalrandomerrors,obtained atNS sucherrors. equal to 10, were smallest for the bovine cortical sample (below 0.054voxels for z-direction, 0.088lm), followed by the ones for the murine tibia sample (below 0.080voxels for x-direction, 3.Results 0.130lm),andlargestfortheonescomputedforbovinetrabecular sample(below0.139voxelsforz-direction,0.226lm).Theerrors 3.1.Randomerrorforthedisplacements obtained for the displacements using the masked images were lowerthanthosefortheunmaskedimagesforbothbovinetrabec- The random errors of each component of the displacement, ular bone and murine tibia samples (Table 2). A trend could be obtained using the registration based on the unmasked images observedforallbonetypes:thehighertheNS,thelowertheran- neverexceeded0.139voxels(0.226lm;fortrabecularbonewith domerror.Nopreferentialdirectionwasobserved. Pleasecitethisarticleinpressas:Palanca,M.,etal.Localdisplacementandstrainuncertaintiesindifferentbonetypesbydigitalvolumecorrelationof synchrotronmicrotomograms.J.Biomech.(2017),http://dx.doi.org/10.1016/j.jbiomech.2017.04.007 4 M.Palancaetal./JournalofBiomechanicsxxx(2017)xxx–xxx Fig.2. Workflowoftheregistrationprocedure.Tomogramswereobtainedbyscanningthespecimenstwicewithoutanyrepositioning.Fromlefttoright:agridofparticular nodalspacing(NS,from10to300voxels)wassuperimposedonthecroppedVOIs(unmaskedormasked,incaseoftrabecularandmurinetibiae);thedisplacementswere evaluatedateachnodebyShIRT;thegridwasconvertedtoanFEmeshandcomputeddisplacementsassignedasboundaryconditions;thecellsofthegridwithallnodes outsidethemaskwereignoredwhenevaluatingmeasurementuncertainties. 3.2.Accuracyandprecision:averageofcomponents Table1 As expected from the results reported in previous studies on List of investigated nodal spacings and nominal numbers of elements and nodes insidetheVOI.FinerstepswereusedforlowerNS(10–25voxels)andcoarsersteps bone (Benoit et al., 2009; Dall’Ara et al., 2014; Palanca et al., forhigherNS(50–300voxels). 2016) and on polypropylene-foam (Roux et al., 2008), the uncer- tainties of the DVC approach (MAER and SDER) had decreasing Nodal Nodal Nominalnumberof Nominalnumberof spacing spacing elementsinsideVOI nodesinsideVOI trendswithrespecttoNS,foralltypesofbone(Fig.3).Foragiven (voxels) (lm) NS,thevaluesofMAERwerelargerthanSDER. 10 16.0 1,000,000 1,030,301 Theranges(forNSof16.0–480.0lm)ofthemediansforMAER 15 24.0 314,432 328,509 andSDERforbovinecorticalbonesamplewerebetween29–2026 20 32.0 125,000 132,651 microstrain and between 8–890 microstrain, respectively. Errors 25 40.0 64,000 68,921 for this bone type were lower than those obtained for the other 50 80.0 8,000 9,261 75 120.0 2,744 3,375 types of bone (from registration based on masked or unmasked 100 160.0 1,000 1,331 images). For bovine trabecular bone the MAER ranged between 150 240.0 512 729 49–4058microstrainand41–1795microstrainforunmaskedand 200 320.0 216 343 maskedimages, respectively. For murinetibiae the MAER ranged 250 400.0 64 125 between 43–3868 microstrain and 51–1394 microstrain for 300 480.0 64 125 unmasked and masked images, respectively. Lower SDER was found for the bovine trabecular bone (between 17–2253 micros- Table2 Randomerrorsforthecomponentsofdisplacement(lm)foreachbonetype. Ns Displacementrandomerrors(lm) Bovinecortical Bovinetrabecular Bovinetrabecularmasked Murinetibiaunmasked Murinetibiamasked unmasked X Y Z X Y Z X Y Z X Y Z X Y Z 10 0.073 0.072 0.088 0.171 0.176 0.226 0.108 0.101 0.152 0.130 0.118 0.118 0.103 0.087 0.084 15 0.053 0.049 0.069 0.143 0.143 0.192 0.095 0.092 0.133 0.093 0.078 0.079 0.099 0.081 0.078 20 0.051 0.046 0.067 0.139 0.141 0.201 0.090 0.083 0.128 0.089 0.074 0.081 0.094 0.077 0.072 25 0.047 0.041 0.061 0.123 0.125 0.186 0.086 0.077 0.116 0.085 0.072 0.078 0.092 0.076 0.070 50 0.039 0.033 0.058 0.087 0.091 0.156 0.068 0.064 0.102 0.074 0.061 0.066 0.085 0.071 0.059 75 0.036 0.032 0.061 0.075 0.081 0.144 0.056 0.057 0.098 0.070 0.057 0.061 0.083 0.069 0.052 100 0.033 0.027 0.055 0.056 0.062 0.114 0.043 0.051 0.086 0.067 0.054 0.053 0.082 0.068 0.049 150 0.031 0.029 0.060 0.047 0.053 0.096 0.037 0.045 0.079 0.062 0.051 0.045 0.075 0.071 0.047 200 0.029 0.025 0.055 0.038 0.041 0.084 0.031 0.042 0.076 0.057 0.050 0.041 0.076 0.071 0.045 250 0.034 0.038 0.068 0.050 0.056 0.103 0.037 0.042 0.062 0.055 0.043 0.057 0.068 0.065 0.040 300 0.024 0.026 0.053 0.030 0.030 0.061 0.027 0.034 0.056 0.049 0.039 0.033 0.065 0.063 0.038 Pleasecitethisarticleinpressas:Palanca,M.,etal.Localdisplacementandstrainuncertaintiesindifferentbonetypesbydigitalvolumecorrelationof synchrotronmicrotomograms.J.Biomech.(2017),http://dx.doi.org/10.1016/j.jbiomech.2017.04.007 M.Palancaetal./JournalofBiomechanicsxxx(2017)xxx–xxx 5 Fig.3. MAER(top)andSDER(bottom)foreachbonetype(bovinecorticalboneinblue,bovinetrabecularboneinorangeandmurinetibiaingreen),forunmaskedand maskedimages(solidandstripedbars,respectively)asafunctionofthenodalspacingNS.Barsrepresentthemedianvalues,whileerrorbarsrepresentthestandard deviation.Ontheright,thepowerlawsandthecoefficientsofdetermination(R2)arereported.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderis referredtothewebversionofthisarticle.) train and 9–1162 microstrainfor unmaskedand masked images) resolution,downsampledimagesandLS-microCTimagesofsimilar and for the murine tibia sample (between 14–2012 and 24–909 samples(Dall’Araetal.,2014)(Fig.4). microstrainforunmaskedandmaskedimages). Downsampling the images increased the median errors for all 3.3.Systematicerrorsforeachcomponentofstrain bone types for both MAER (113–11971 microstrain for cortical bone, 265–14650 microstrain for trabecular bone and 86–7011 The systematic errors were independent from NS, for all bone microstrain for murine tibiae) and SDER (36–4790 microstrain types and for both registrations based on unmasked or masked for cortical bone, 124–8985 microstrain for trabecular bone and images(Fig.Sup.1inSupplementaryMaterial).Onlyweakreduc- 19–4165microstrainformurinetibiae).ThepowerlawsforMAER tions of the systematic errors for the normal components have andSDERshowedsimilartrendsbutdifferentamplitudefornative been observed for mouse tibiae for both unmasked and masked Pleasecitethisarticleinpressas:Palanca,M.,etal.Localdisplacementandstrainuncertaintiesindifferentbonetypesbydigitalvolumecorrelationof synchrotronmicrotomograms.J.Biomech.(2017),http://dx.doi.org/10.1016/j.jbiomech.2017.04.007 6 M.Palancaetal./JournalofBiomechanicsxxx(2017)xxx–xxx Fig.4. MediansandpowerlawscomputedforMAER(top)andSDER(bottom)foreachbonetype(bovinecorticalboneinblue,bovinetrabecularboneinorangeandmurine tibiaingreen),fornativeSR-microCTimages(solidlines),downsampledSR-microCTimages(dashedlines)andLS-microCTimagesfromDall’Araetal.(2014)(dash-dotlines). Ontheright,thepowerlawsandthecoefficientsofdetermination(R2)arereported.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferred tothewebversionofthisarticle.) images.Themediansofthesystematicerrorsforthebovinecorti- trabecularbonewithunmaskedandmaskedimages,respectively; calbonesamplerangedbetween 43and80microstrain,andwere between 17 and 197 microstrain and between 6 and 209 " " " lowerthanthoseoftheothertwobonetypes(between 55and microstrainformurinetibiaeusingunmaskedandmaskedimages, " 124microstrainandbetween 133and88microstrainforbovine respectively). In most cases no systematic preferential direction " Pleasecitethisarticleinpressas:Palanca,M.,etal.Localdisplacementandstrainuncertaintiesindifferentbonetypesbydigitalvolumecorrelationof synchrotronmicrotomograms.J.Biomech.(2017),http://dx.doi.org/10.1016/j.jbiomech.2017.04.007 M.Palancaetal./JournalofBiomechanicsxxx(2017)xxx–xxx 7 wasobserved.Largererrorswerefoundfornormalcomponentsin DVC. Conversely for murine tibiae the SDERs computed with the mouse tibiae. The downsampled images confirmed the inde- unmasked or masked images were similar for NSs larger than pendenceofthesystematicerrorsfromtheNS,butshowedhigher 10voxels (16lm). This different effect of the masking could be values errors (between 74 and 264 microstrain for the bovine duetodifferencesinsizeandshapeofthebonefeaturesthatform " cortical bone, between 207 and 590 for the bovine trabecular thetwomicrostructures. " bone,andbetween 12and219forthemurinetibiae). This study explored the relationships between spatial resolu- " tionoftheDVCstrainmeasurementsandtheassociatederrorfor 3.4.Randomerrorsforeachcomponentofstrain the different bone types. Not surprisingly, the trend of the DVC uncertaintiesfollowedapowerlawforallbonetypes,confirming For all registrations, increasing the NS reduced the random whatwaspreviouslyfoundforLS-microCTbasedbonespecimens errorforeachcomponentofstrain(Fig.5).Asobservedforthedis- (Dall’Ara et al., 2014; Roberts et al., 2014) or for polypropylene- placement,bovinecorticalboneshowedthelowestrandomerrors, foam specimens (Roux et al., 2008). For NSs of 40lm or larger, with medians ranging between 14 and 3271 microstrain. Bovine theSDERforthecorticalboneimageswerelowerthan200micros- trabecularbonewasassociatedtorandomerrorsof32–7480and train, acceptable error when investigating deformations in the 23–3228microstrainusingunmaskedimages,andmaskedimages, physiological range. For registrations using the masked images, respectively.Themurinetibiaeshowederrorsof23–6669and23– median SDER values lower than 200 microstrain were found for 2543 microstrain using unmasked and masked images, respec- NS larger than 80lm for the murine tibiae, or larger than tively.Randomerrorswerelargestfortheshearstrainsinallcases 120lmforthebovinetrabecularbone.LargerNSswererequired (approximately 1.5 times higher than for the normal strain). The toreducetheerrorassociatedtoeachcomponentofstrainbelow sametrendwasobservedforthedownsampledimages.Here,the 200microstrain(80lmforthecorticalbone,160lmformasked murine tibiae had the lowest random errors (57–12,051 micros- trabecularbone,and120lmformaskedmurinetibiae).Theseval- train). The bovine cortical bone had errors between 77 and uesareacceptableformeasurementsperformedonbonestructural 18,810 microstrain and the bovine trabecular bone between 249 units,andsuggestthattheSR-microCTbasedDVCcanbeusedto and25,185microstrain. validatecomputationalmodelsthataimtopredictlocalstrainsat the tissue level (Chen et al., 2017; Eswaran et al., 2007; Van Rietbergenetal.,1995;Verhulpetal.,2006). 3.5.Spatialdistributionoftheerrors In the present study the errors were vastly lower than those obtained processing traditional LS-microCT (voxel size of The distribution of the apparent normal strain along the z- 10lm)images(Dall’Araetal.,2014)ofsimilarspecimensfrom directionvariedbetweenbonetypes,andevenmorepronouncedly # the same femur processed in this study, using the same DVC withtheNS(Fig.6).HavingappliedtheDVCtorepeatedimagesof approachonRepeated-Scan-Tests. Inthatstudy,SDERbelow200 the same undeformed specimens (zero-strain condition), this microstrainwereachievedonlyforNSabove472lmfortrabecular strainrepresentstheerrordistributionwithineachbonestructure. bone,and536lmforcorticalbone.Thepresentstudyprovedthat Forbovinecorticalbone,areasonablyuniformstraindistribu- theDVC uncertaintiescouldbereduced,improvingthe measure- tion was obtained with NS equal to 50 and 100voxels (80 and ment spatial resolution almost fourteen times for cortical bone 160lm). Conversely, for the bovine trabecular bone and murine and almost four times for trabecular bone. This difference could tibiae, the bone surface and those regions with limited number be due to the superimposition of two effects in the SR-microCT of features within the volume (e.g. central portion of the murine images:the smallereffective voxel sizeand thehigher signal-to- tibia)showedlargerstrainerrors.Itmustbenotedthatfortrabec- noiseratio.Whenthedownsampledimageswereanalysed,SDER ularbonewithNSequalto50voxels(80lm)thepeakerrorswere of200microstrainwereachievedwithameasurementspatialres- inmostcasesinregionsoutsidetheboneorclosetotheborderof olutionof176lmforthecorticalbone(fivetimescoarserthanthe theimage. 34lmneededfortheoriginalimages),andof402lmforthetra- becular bone (four times coarser than the 97 of the original 4.Discussion images).Theseanalysesshowedthatafinervoxelsizecanexplain only partially the lower SDER of the DVC with SR-microCT. Such ThepotentialofDVCforboneapplicationsisstillpartiallyunex- measurement spatial resolutions were still better than those plored, as this approach has not been yet applied intensively to required to obtain the same SDER with LS-microCT (Dall’Ara high-quality images. In this study measurement uncertainties of et al., 2014). The larger improvement for cortical bone is likely aSR-microCTbasedDVCapproachwereevaluatedforthefirsttime duetothemuchhighernumberoffeatures(i.e.theosteocytelacu- for three different types of bone by using Repeated-Scan-Tests naearoundthevascularpores)resolvablewithSR-microCTimages (Palancaetal.,2015). forsuchmicrostructurecomparedtoLS-microCTimages.However, InlinewithpreviousstudiesperformedonLS-microCTimages as comparisons were made between SR-microCT and LS-microCT (Dall’Ara et al., 2014; Palanca et al., 2015; Palanca et al., 2016; imagesofsimilar(butnotidentical)specimens,furtherinvestiga- Tozzi et al., 2017), also for DVC based on SR-microCT, the larger tionscouldhelptobetterclarifythesourcesoferrors. the NS the lower the measurement uncertainties. This trend is Alltheabove-mentionedconsiderationswerebasedonanalyses probablyduetothefactthatevenforhigherimagequality,thedis- of data from zero-strain tests. While a detailed analyses of DVC placement errors were only modestly affectedby the NS (e.g. for precision under loading will need a more comprehensive future NS 10 and 100voxels, the random error was reduced by a factor studyforestimatingtheeffectofloadingcondition,loadingdirec- 2 if the NS was increased by a factor 10, Table 1), which lead to tion and loading level for different structures, in this manuscript increased strain errors for smallest distance between the nodes wereportsomepreliminaryresultsobtainedfromvirtuallycom- ofthegrid. pressedcorticalspecimens(SectionS2inSupplementaryMaterial). Forthebovinetrabecularbone,registrationsbasedonmasked To the authors’ knowledge, this is the first study where the images showed lower errors compared to the ones obtained by displacement and strain errors of a global DVC approach based registering unmasked images. This finding highlights how the on SR-microCT images were evaluated with Repeated-Scan-Tests exclusion of low-contrast marrow regions, for which noise and and virtually compressed repeated images for different types of artefacts probably dominate the registration, is beneficial for bone specimens. Another study used synchrotron images on a Pleasecitethisarticleinpressas:Palanca,M.,etal.Localdisplacementandstrainuncertaintiesindifferentbonetypesbydigitalvolumecorrelationof synchrotronmicrotomograms.J.Biomech.(2017),http://dx.doi.org/10.1016/j.jbiomech.2017.04.007 8 M.Palancaetal./JournalofBiomechanicsxxx(2017)xxx–xxx Fig.5. Medianoftherandomerrorforeachbonetype(corticalboneonthetop,trabecularboneinthemiddleandmurinetibiaeonthebottom),foreachregistrationmethods (fromunmaskedimagesontheleft,frommaskedimagesontheright),foreachcomponentofstrain,asafunctionofNS.Toimprovethereadability,errorbarsrepresenting standarddeviationswerereportedonlyonthetopofeachhistogram.Tohelpinterpretingtheresults,arangeforthetypicalphysiologicaldeformations(1,000–2,000 microstrainYang.,etal.,2011)isindicated.Forthescopeofthisstudy,alsothetargetvalueforthemeasurementerrorisindicated(oneorderofmagnitudelower:200 microstrain). DVCapproachandperformedapreliminaryevaluationoftheerror registration algorithm, was applied to SR-microCT images (voxel (Christenetal.,2012)onvirtuallymovedandstretchedimagesof size of 740nm) with a NS of approximately 30lm and provided murine femur. That DVC approach, based on demons deformable SDERofapproximately1800microstrain,morethanfourtimeslar- Pleasecitethisarticleinpressas:Palanca,M.,etal.Localdisplacementandstrainuncertaintiesindifferentbonetypesbydigitalvolumecorrelationof synchrotronmicrotomograms.J.Biomech.(2017),http://dx.doi.org/10.1016/j.jbiomech.2017.04.007 M.Palancaetal./JournalofBiomechanicsxxx(2017)xxx–xxx 9 Fig.6. Distributionofz-directionnormalstrainshownforamid-heightcross-sectionforatypicalspecimenofeachbonetypeforthreenodalspacing(10,50,100).For trabecularboneandmurinetibiaethemaskedimageswereusedforthisanalyses.AstheDVCwasappliedtorepeatedimagesofthesameundeformedspecimens,the reportedstrainrepresentsinfacttheDVCmeasurementuncertainties.Thecross-sectionimageofthecorrespondingslicewasoverlappedtothestrainerrormap.Forevery microstructure,thesidelengthoftheimageis1,600lm. gerthanthatfoundformaskedmurinetibiaeinthisstudy.Thisdif- approach. While similar trends can be expected also for local ferencemightbeduetodifferencesinmicrostructure,tomographic DVCapproaches(Leclercetal.,2012;Palancaetal.,2015)research- resolutionand registration method. However, considering that in ers are welcome to download the images used in this study for thatstudytheSDERwascomputedonvirtuallymovedimagesthat comparingdifferentmethods. donotincludetheeffectofimagenoise,themethodproposedin this study is by far the one with the highest precision (lowest 5.Conclusion SDER)reportedintheliteraturetodateforanalysesonbonespec- imens.ItremainstobeinvestigatedifotherDVCapproacheswould The uncertainties associated with a global DVC approach achievesimilar(or better)precisionif basedonthesameimages applied to Synchrotron tomograms with small voxel size are usedinthepresentstudy. sufficiently low to allow reliable strain measurements at the DespitethehighpotentialofSR-microCTbasedDVC,bonedam- tissue-levelindifferentbonestructures.Thismethodcanbeused age induced by X-ray synchrotron irradiation is apparently the toevaluatelocalbonedeformationsunderloading,andtovalidate majorlimitationforitsapplicationintime-lapsedinsitumechan- thestrainpredictedbycomputationalmodelsatthetissue-level. icaltests(Barthetal.,2010).Previousauthorshaveattemptedto mechanically test bone samples within a synchrotron facility (Christen et al., 2012; Thurneret al., 2006) but reported that the Conflictofinterest irradiationand/orassociatedheataffectedthelocalmaterialprop- ertiesofthetissue(Barthetal.,2010).InordertoapplythisDVC Authorshavenoconflictofinterestassociatedtothispaper. approach to SR-microCT in situ mechanically tested and imaged bone samples further scanning optimization (Pacureanu et al., Acknowledgments 2012)andanalysistoreducethisproblemby,forexample,reduc- ing exposure times, supressing lower X-ray frequencies or sub- TheauthorswouldliketoacknowledgeYuanChen,AndreCas- merging samples in aqueous buffer, would form the basis of a tro, Ana Campos-Marin, Claudia Wittkowske, Luke Boldock and usefulmethodologicalstudy. Kazimir Wanelik for help during experiments at Diamond Light The main limitation of this study is that the measurement Source. We acknowledge Diamond Light Source for time at the uncertainties were investigated in a homogeneous zero-strain Diamond-Manchester Imaging Beamline I13-2, under proposal case.Itwouldbeinterestingtofurtherstudytheevolutionoferrors MT10315. This study was partially funded by the FP7 European within strained specimens, especially where the gradients of programMAMBO(PIEF-GA-2012-327357)andbytheEPSRCFron- strains are highest. Moreover, the error associated to the strain tier Grant Multisim (EP/K03877X/1). Palanca acknowledges the and displacement measurements was evaluated for a global DVC ‘MarcoPolo’travelgrantawardedbyUniversityofBologna. Pleasecitethisarticleinpressas:Palanca,M.,etal.Localdisplacementandstrainuncertaintiesindifferentbonetypesbydigitalvolumecorrelationof synchrotronmicrotomograms.J.Biomech.(2017),http://dx.doi.org/10.1016/j.jbiomech.2017.04.007 10 M.Palancaetal./JournalofBiomechanicsxxx(2017)xxx–xxx AppendixA.Supplementarymaterial Fuerst, Radcliffe, H.S., Libanati, C., 2014. Femoral and vertebral strength improvements in postmenopausal women with osteoporosis treated with denosumab.J.BoneMiner.Res.29,158–165. Supplementarydataassociatedwiththisarticlecanbefound,in Leclerc,H.,Perle,J.N.,Hild,F.,Roux,S.,2012.Digitalvolumecorrelation:whatare the online version, at http://dx.doi.org/10.1016/j.jbiomech.2017. thelimitstothespatialresolution?Mech.Ind.13,361–371. 04.007. Lerebours, C., Buenzli, P.R., Scheiner, S., Pivonka, P., 2015. A multiscale mechanobiologicalmodelofboneremodellingpredictssite-specificboneloss in the femur during osteoporosis and mechanical disuse. Biomech. Model. References Mechanobiol.15,1. Levchuk,A.,Zwahlen,A.,Weigt,C.,Lambers,F.M.,Badilatti,S.D.,Schulte,F.A.,Kuhn, G.,Muller,R.,2014.TheClinicalBiomechanicsAward2012-presentedbythe Ashton,A.W.,Aishima,J.,Basham,M.,Chang,P.,ElKassaby,B.,Filik,J.,Gerring,M., EuropeanSocietyofBiomechanics:largescalesimulationsoftrabecularbone Levik,K.,Sikharulidze,I.,Webber,M.,Wharmby,M.T.,2015.DawnSciencev1.7 adaptationtoloadingandtreatment.Clin.Biomech.29,355–362. (DLSEdition).p. Liu,L.,Morgan,E.F.,2007.Accuracyandprecisionofdigitalvolumecorrelationin Barber,D.C.,Hose,D.R.,2005.Automaticsegmentationofmedicalimagesusing quantifyingdisplacementsandstrainsintrabecularbone.J.Biomech.40,3516– imageregistration:diagnosticandsimulationapplications.J.Med.Eng.Tech. 3520. 29,53–63. Lu,Y.,Boudiffa,M.,Dall’Ara,E.,Bellantuono,I.,Viceconti,M.,2015.Evaluationofin- Barber,D.C.,Oubel,E.,Frangi,A.F.,Hose,D.R.,2007.Efficientcomputationalfluid vivomeasurementerrorsassociatedwithmicro-computedtomographyscans dynamicsmeshgenerationbyimageregistration.Med.ImageAnal.11,648– bymeansofthebonesurfacedistanceapproach.Med.Eng.Phys.37,1091– 662. 1097. Barth,H.D.,Launey,M.E.,Macdowell,A.A.,Ager3rd,J.W.,Ritchie,R.O.,2010.Onthe Madi,K.,Tozzi,G.,Zhang,Q.H.,Tong,J.,Cossey,A.,Au,A.,Hollis,D.,Hild,F.,2013. effectofX-rayirradiationonthedeformationandfracturebehaviorofhuman Computation of full-field displacements in a scaffold implant using digital corticalbone.Bone46,1475–1485. volumecorrelationandfiniteelementanalysis.Med.Eng.Phys.35,1298–1312. Basham,M.,Filik,J.,Wharmby,M.T.,Chang,P.C.,ElKassaby,B.,Gerring,M.,Aishima, Pacureanu, A., Langer, M., Boller, E., Tafforeau, P., Peyrin, F., 2012. Nanoscale J.,Levik,K.,Pulford,B.C.,Sikharulidze,I.,Sneddon,D.,Webber,M.,Dhesi,S.S., imaging of the bone cell network with synchrotron X-ray tomography: Maccherozzi,F.,Svensson,O.,Brockhauser,S.,Naray,G.,Ashton,A.W.,2015. optimizationofacquisitionsetup.Med.Phys.39,2229–2238. DataanalysisWorkbeNch(DAWN).J.SynchrotronRadiat.22,853–858. Palanca, M., Tozzi, G., Cristofolini, L., Viceconti, M., Dall’Ara, E., 2015. 3D local Bay,B.K.,Smith,T.S.,Fyhrie,D.P.,Saad,M.,1999.Digitalvolumecorrelation:three- measurementsofbonestrainanddisplacement:comparisonofthreedigital dimensionalstrainmappingusingX-raytomography.Exp.Mech.39,217–226. volumecorrelationapproaches.J.Biomech.Eng.(ASME)137.071006-071001/ Bayraktar,H.H.,Morgan,E.F.,Niebur,G.L.,Morris,G.E.,Wong,E.K.,Keaveny,T.M., 071006-071014. 2004. Comparison of the elastic and yield properties of human femoral Palanca,M.,Tozzi,G.,Dall’Ara,E.,Curto,M.,Innocente,F.,Danesi,V.,Cristofolini,L., trabecularandcorticalbonetissue.J.Biomech.37,27–35. 2016.DigitalVolumeCorrelationcanbeusedtoestimatelocalstrainsinnatural Benoit,A.,Guerard,S.,Gillet,B.,Guillot,G.,Hild,F.,Mitton,D.,Perie,J.N.,Roux,S., andaugmentedvertebrae:anorgan-levelstudy.J.Biomech.49,3882–3890. 2009.3Danalysisfrommicro-MRIduringinsitucompressiononcancellous Roberts, B.C., Perilli, E., Reynolds, K.J., 2014. Application of the digital volume bone.J.Biomech.42,2381–2386. correlationtechniqueforthemeasurementofdisplacementandstrainfieldsin Bouxsein,M.L.,2003.Bonequality:wheredowegofromhere?Osteoporos.Int.14 bone:aliteraturereview.J.Biomech.47,923–934. (Suppl.5),S118–S127. Roux,S.,Hild,F.,Viot,P.,Bernard,D.,2008.Three-dimensionalimagecorrelation Chen,Y.,Dall’Ara,E.,Sales,E.,Manda,K.,Wallace,R.,Pankaj,P.,Viceconti,M.,2017. fromX-raycomputedtomographyofsolidfoam.Compos.AAppl.Sci.Manuf. Micro-CTbasedfiniteelementmodelsofcancellousbonepredictaccurately 39,1253–1265. displacement once the boundary condition is well replicated: A validation Schileo, E., Dall’ara, E., Taddei, F., Malandrino, A., Schotkamp, T., Baleani, M., study.J.Mech.BehaviorBiomed.Mater.65,644–651. Viceconti, M., 2008. An accurate estimation of bone density improves the Christen, D., Levchuk, A., Schori, S., Schneider, P., Boyd, S.K., Muller, R., 2012. accuracyofsubject-specificfiniteelementmodels.J.Biomech.41,2483–2491. Deformable image registration and 3D strain mapping for the quantitative Thurner, P.J., Wyss, P., Voide, R., Stauber, M., Stampanoni, M., Sennhauser, U., assessmentofcorticalbonemicrodamage.J.Mech.BehaviorBiomed.Mater.8, Müller, R., 2006. Time-lapsed investigation of three-dimensional failure and 184–193. damage accumulation in trabecular bone using synchrotron light. Bone 39, Dall’Ara, E., Barber, D., Viceconti, M., 2014. About the inevitable compromise 289–299. betweenspatialresolutionandaccuracyofstrainmeasurementforbonetissue: Titarenko,S.,Withers,P.J.,Yagola,A.,2010.Ananalyticalformulaforringartefact a3Dzero-strainstudy.J.Biomech.47,2956–2963. suppressioninX-raytomography.Appl.Math.Lett.23,1489–1495. Dall’Ara, E., Luisier, B., Schmidt, R., Kainberger, F., Zysset, P., Pahr, D., 2013. A Tozzi, G., Dall’Ara, E., Palanca, M., Curto, M., Innocente, F., Cristofolini, L., 2017. nonlinear QCT-based finite element model validation study for the human StrainuncertaintiesfromtwoDVCapproachesinprophylacticallyaugmented femurtestedintwoconfigurationsinvitro.Bone52,27–38. vertebrae:localanalysisonboneandbone-cementmicrostructures.J.Mech. Dall’Ara, E., Pahr, D., Varga, P., Kainberger, F., Zysset, P., 2012. QCT-based finite BehaviorBiomed.Mater.67,117–126. elementmodelspredicthumanvertebralstrengthinvitrosignificantlybetter Tozzi, G., Danesi, V., Palanca, M., Cristofolini, L., 2016. Elastic full-field strain thansimulatedDEXA.Osteoporos.Int.23,563–572. analysis and microdamage progression in the vertebral body from digital Danesi,V.,Tozzi,G.,Cristofolini,L.,2016.Applicationofdigitalvolumecorrelation volumecorrelation.Strain52,446–455. tostudytheefficacyofprophylacticvertebralaugmentation.Clin.Biomech.39, VanRietbergen,B.,Weinans,H.,Huiskes,R.,Odgaard,A.,1995.Anewmethodto 14–24. determine trabecular bone elastic properties and loading using Doube,M.,Klosowski,M.M.,Arganda-Carreras,I.,Cordelieres,F.,Dougherty,R.P., micromechanicalfinite-elementmodels.J.Biomech.28,69–81. Jackson, J., Schmid, B., Hutchinson, J., Shefelbine, S., 2010. BoneJ: free and Verhulp,E.,vanRietbergen,B.,Huiskes,R.,2006.Comparisonofmicro-leveland extensibleboneimageanalysisinImageJ.Bone47,1076–1079. continuum-levelvoxelmodelsoftheproximalfemur.J.Biomech.39,2951– Eswaran,S.K.,Gupta,A.,Keaveny,T.M.,2007.Locationsofbonetissueathighriskof 2957. initialfailureduringcompressiveloadingofthehumanvertebralbody.Bone41, Zauel,R.,Yeni,Y.N.,Bay,B.K.,Dong,X.N.,Fyhrie,D.P.,2006.Comparisonofthelinear 733–739. finiteelementpredictionofdeformationandstrainofhumancancellousbone Gillard,F.,Boardman,R.,Mavrogordato,M.,Hollis,D.,Sinclair,I.,Pierron,F.,Browne, to3Ddigitalvolumecorrelationmeasurements.J.Biomech.Eng.128,1–6. M., 2014. The application of digital volume correlation (DVC) to study the Zysset,P.,Pahr,D.,Engelke,K.,Genant,H.K.,McClung,M.R.,Kendler,D.L.,Recknor, microstructural behaviour of trabecular bone during compression. J. Mech. C., Kinzl, M., Schwiedrzik, J., Museyko, O., Wang, A., Libanati, C., 2015. Behav.Biomed.Mater.29,480–499. Comparisonofproximalfemurandvertebralbodystrengthimprovementsin Grassi, L., Isaksson, H., 2015. Extracting accurate strain measurements in bone theFREEDOMtrialusinganalternativefiniteelementmethodology.Bone81, mechanics:acriticalreviewofcurrentmethods.J.Mech.Behav.Biomed.Mater. 122–130. 50,43–54. Yang,P.F.,Bruggemann,G.P.,Rittweger,J.,2011.Whatdowecurrentlyknowfrom Hussein,A.I.,Barbone,P.E.,Morgan,E.F.,2012.Digitalvolumecorrelationforstudy in vivo bone strain measurements in humans? J. Musculoskelet. Neuronal ofthemechanicsofwholebones.ProcediaIUTAM4,116–125. Interact.11,8–20. Keaveny,T.M.,McClung,M.R.,Genant,H.K.,Zanchetta,J.R.,Kendler,D.,Brown,J.P., Goemaere,S.,Recknor,C.,Brandi,M.L.,Eastell,R.,Kopperdahl,D.L.,Engelke,K., Pleasecitethisarticleinpressas:Palanca,M.,etal.Localdisplacementandstrainuncertaintiesindifferentbonetypesbydigitalvolumecorrelationof synchrotronmicrotomograms.J.Biomech.(2017),http://dx.doi.org/10.1016/j.jbiomech.2017.04.007
Description: