ebook img

Local Density of Solutions to Fractional Equations (De Gruyter Studies in Mathematics) PDF

144 Pages·2019·2.439 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Local Density of Solutions to Fractional Equations (De Gruyter Studies in Mathematics)

AlessandroCarbotti,SerenaDipierro,andEnricoValdinoci LocalDensityofSolutionstoFractionalEquations De Gruyter Studies in Mathematics | Editedby CarstenCarstensen,Berlin,Germany GavrilFarkas,Berlin,Germany NicolaFusco,Napoli,Italy FritzGesztesy,Waco,Texas,USA NielsJacob,Swansea,UnitedKingdom ZenghuLi,Beijing,China Karl-HermannNeeb,Erlangen,Germany Volume 74 Alessandro Carbotti, Serena Dipierro, and Enrico Valdinoci Local Density of Solutions to Fractional Equations | MathematicsSubjectClassification2010 Primary:26A33,34A08,35R11;Secondary:60G22 Authors AlessandroCarbotti Prof.Dr.EnricoValdinoci DipartimentodiMatematicaeFisica DepartmentofMathematicsandStatistics UniversitàdelSalento UniversityofWesternAustralia ViaPerArnesano 35StirlingHighway 73100Lecce Crawley,WA6009 Italy Australia [email protected] [email protected] Prof.Dr.SerenaDipierro DepartmentofMathematicsandStatistics UniversityofWesternAustralia 35StirlingHighway Crawley,WA6009 Australia [email protected] ISBN978-3-11-066069-2 e-ISBN(PDF)978-3-11-066435-5 e-ISBN(EPUB)978-3-11-066131-6 ISSN0179-0986 LibraryofCongressControlNumber:2019946148 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2019WalterdeGruyterGmbH,Berlin/Boston Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Preface Thestudyofnonlocaloperatorsoffractionaltypepossessesalongtradition,moti- vatedbothbymathematicalcuriosityandbyreal-worldapplications.Thoughthisline ofresearchpresentssomesimilaritiesandanalogieswiththestudyofoperatorsofin- tegerorder,italsopresentsanumberofremarkabledifferences,oneofthegreatest beingtherecentlydiscoveredphenomenonthatallfunctionsare(locally)fractionally harmonic(uptoasmallerror).Thisfeatureisquitesurprising,sinceitisinsharpcon- trastwiththecaseofclassicalharmonicfunctions,anditrevealsagenuinelynonlocal peculiarity. Moreprecisely,ithasbeenprovedin[25]thatgivenanyCk-functionfinabounded domainΩandgivenanyϵ>0,thereexistsafunctionf whichisfractionallyharmonic ϵ inΩsuchthattheCk-distanceinΩbetweenf andf islessthanϵ. ϵ Interestingly,thiskindofresultscanbealsoappliedatanyscale,asshowninFig- ures1,2,and3.Roughlyspeaking,givenanyfunction,withoutanyspecialgeomet- ricprescription,inagivenboundeddomain(asinFigure1),onecan“complete”the functionoutsidethedomaininsuchawaythattheresultingobjectisfractionallyhar- monic.Thatis,onecanendowthefunctiongivenintheboundeddomainwithanum- berofsuitableoscillationsoutsidethedomaininordertomakeanintegro-differential operatoroffractionaltypevanish.ThisideaisdepictedinFigure2.Asamatteroffact, Figure2mustbeconsideredjusta“qualitative”pictureofthismethod,andshouldnot beregarded“realistic.”However,evenifFigure2doesnotprovideacorrectfractional harmonicextensionofthegivenfunctionoutsidethegivendomain,theresultcanbe repeatedatalargerscale,asinFigure3,addingfurtherremoteoscillationsinorderto obtainafractionalharmonicfunction. Figure1:Allfunctionsarefractionalharmonic,atdifferentscales(scaleoftheoriginalfunction). https://doi.org/10.1515/9783110664355-201 VI | Preface Figure2:Allfunctionsarefractionalharmonic,atdifferentscales(“first”scaleofexterioroscilla- tions). Figure3:Allfunctionsarefractionalharmonic,atdifferentscales(“second”scaleofexterioroscilla- tions). Inthissense,thistypeofresultsreallysaysthatwhatevergraphwedrawonasheet ofpaper,itisfractionallyharmonic(morerigorously,itcanbeshadowedwithanar- bitraryprecisionbyanothergraph,whichcanbeappropriatelycontinuedoutsidethe sheetofpaperinawaywhichmakesitfractionallyharmonic). Thisbookcontainsanewresultinthislineofinvestigation,statingthateveryfunc- tionliesinthekernelofeverylinearequationinvolvingsomefractionaloperator,upto asmallerror.Thatis,anygivenfunctioncanbesmoothlyapproximatedbyfunctions lyinginthekernelofalinearoperatorinvolvingatleastonefractionalcomponent.The settinginwhichthisresultholdsisverygeneral,sinceittakesintoaccountanomalous diffusion,withpossiblefractionalcomponentsinbothspaceandtime.Theoperators takenintoaccountcomprisethecaseofthesumofclassicalandfractionalLaplacians, possiblyofdifferentorders,inthespacevariables,andclassicalorfractionalderiva- tivesinthetimevariables.Namely,theequationcanbeofanyorder,itdoesnotneed anystructure(itneedsnoellipticityorparabolicityconditions),andthefractionalbe- haviorisintime,space,orboth. Inasense,thistypeofapproximationresultsrevealsthetruepoweroffractional equations,independentlyofthestructural“details”ofthesingleequationundercon- sideration,andshowsthatspace-fractionalandtime-fractionalequationsexhibitava- rietyofsolutionswhichismuchricherandmoreabundantthaninthecaseofclassical diffusion. Preface | VII Though space- and time-fractional diffusions can be seen as related aspects of nonlocal phenomena, they arise in different contexts and present important struc- turaldifferences.Theparadigmaticexampleofspace-fractionaldiffusionisembodied bythefractionalLaplacian,thatis,afractionalrootoftheclassicalLaplaceoperator. Thissettingoftensurfacesfromstochasticprocessespresentingjumpsanditexhibits theclassicalspatialsymmetriessuchasinvarianceundertranslationsandrotations, plusascaleinvarianceoftheintegralkerneldefiningtheoperator.Differentlyfrom this,time-fractionaldiffusionistypicallyrelatedtomemoryeffects,andthereforeit distinguishesverystronglybetweenthe“past”andthe“future,”andthearrowoftime playsamajorrole(inparticular,sincethepastinfluencesthefuture,butnotviceversa, time-fractionaldiffusiondoesnotpossessthesametypeofsymmetriesofthespace- fractionalone).Inthesepages,wewillbeabletoconsideroperatorswhichariseas superpositionsofbothspace-andtime-fractionaldiffusion,possiblytakingintoac- countclassicalderivativesaswell(thecasesofdiffusionwhichisfractionaljustin eitherspaceortimearecomprisedasspecialsituationsofourgeneralframework). Interestingly, we will also consider fractional operators of any order, showing, in a sense,thatsomepropertiesrelatedtofractionaldiffusionpersistalsowhenhigheror- deroperatorscomeintoplay,differentlyfromwhathappensintheclassicalcase,in whichthetheoryavailablefortheLaplacianoperatorpresentssignificantdifferences withrespecttothecaseofpolyharmonicoperators. Toachievetheoriginalresultpresentedhere,wedevelopabroadtheoryofsome fundamentalfactsaboutspace-andtime-fractionalequations.Someoftheseaddi- tionalresultsareknownfromtheliterature,atleastinsomeparticularcases,butsome otherarenewandinterestinginthemselves,and,indevelopingtheseauxiliarythe- ories,thismonographpresentsacompletelyself-containedapproachtoanumberof basicquestions,suchas: – boundarybehaviorforthetime-fractionaleigenfunctions; – boundarybehaviorforthetime-fractionalharmonicfunctions; – Greenrepresentationformulas; – existenceandregularityforthefirsteigenfunctionofthe(possiblyhigherorder) fractionalLaplacian; – boundary asymptotics of the first eigenfunctions of the (possibly higher order) fractionalLaplacian; – boundarybehaviorof(possiblyhigherorder)fractionalharmonicfunctions. Wenowdiveintothetechnicaldetailsofthismatter.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.