ebook img

Local Aronson-Benolan type gradient estimates for the porous medium type equation under Ricci PDF

0.16 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Local Aronson-Benolan type gradient estimates for the porous medium type equation under Ricci

January 10, 2017 Local Aronson-B´enolan type gradient estimates for the porous medium type equation under Ricci flow WenWang HuiZhou DapengXie 7 1 0 Abstract. Inthispaper,weinvestigatesomenewlocalAronson-B´enilantype 2 gradientestimatesforpositivesolutionsoftheporousmediumequation n ut=∆um, a underRicciflow. Asapplication,therelatedHarnackinequalitiesarederived. J Ourresultsgeneralizeknownresults. Theseresultsinthepapercanberegard 9 as generalizing the gradient estimates of Lu-Ni-Va´zquez-Villani and Huang- Huang-LitotheRicciflow. ] G D . 1. Introduction h t a In the paper, we mainly derive the parabolic version gradient estimates and m Harnackinequality forpositive solutionsto the porousmedium equation(PME for [ short) ut =∆um, m>1 (1.1) 1 under Ricci flow. v 3 Let (Mn,g) be a complete Riemannian manifold. Li and Yau [9] established a 0 famous gradientestimate for positive solutionsto the heat equation. In 1991,Liin 2 [10] deduced gradient estimates and Harnack inequalities for positive solutions to 2 thenonlinearparabolicequationonM [0, ).In1993,Hamiltonin[5]generalized 0 × ∞ the constant α of Li and Yau’s result to the function α(t) = e2Kt. In 2006, Sun . 1 [17] also proved gradient estimates of different coefficient. In 2011, Li and Xu 0 in [11] further promoted Li and Yau’s result, and found two new functions α(t). 7 1 Recently, first author and Zhang in [18] further generalized Li and Xu’s results to : the nonlinear parabolic equation. Related results can be found in [4, 14, 19]. v In 2009,Lu, Ni, Va´zquez andVillaniin [13]studied the PMEonmanifolds, and i X obtained the results below. r TheoremA(Lu,Ni,V´azquezandVillani). Let(Mn,g)beann-dimensional a complete Riemannnian manifold with Ric(B (2R)) K, K > 0. Assume that p u is a positive solution of (1.1). Let v = m um−1≥an−d M = max v. m−1 Bp(2R)×[0,T] Then for any α>1, we have v 2 v CMaα2 α2 |∇ | α t am2+(m 1)(1+√KR) v − v ≤ R2 α 1 − (cid:18) − (cid:19) α2 aα2 + a(m 1)MK+ α 1 − t − on the ball B (2R), where a= n(m−1) and the constant Cdepends only on n. p n(m−1)+2 2010 Mathematics Subject Classification. 58J35, 35K05,53C21. Key words and phrases. porousmediumequation; Gradientestimate;Harnackinequality. ThispaperwastypesetusingAMS-LATEX. Correspondingauthor: WenWang,E-mail: [email protected]. 1 2 W.WANG,H.ZHOU,D.XIE Moreover, when R , the following gradient estimate on complete noncaom- →∞ pact Riemannian manifold (Mn,g) can be deduced: v 2 v α2 aα2 |∇ | α t a(m 1)MK+ v − v ≤ α 1 − t − Huang,HuangandLiin[7]generalizedtheresultsofLu,Ni,Va´zquezandVillani, obtained Li-Yau type, Hamilton type and Li-Xu type gradient estimates. Recently, above these results had been generalized to the Ricci flow. The Ricci flow ∂ g(x,t)= 2Ric(x,t) (1.2) t − wasfirstintroducedbyHamilton[6]toinvestigatethe Poincar´econjectureoncom- pact three dimensional manifolds of positive Ricci curvature. In 2008, Kuang and Zhang [8] proved a gradient estimate for positive solutions to the conjugate heat equationunderRicciflowonaclosedmanifold. Soonafterwards,gradientestimate for positive solutions to the heat equation under Ricci flow were further studied, one can see [1, 12, 14, 16]. Recently, Cao and Zhu [3] derived some Aronson and B´enilan estimates for PME (1.1) under Ricci flow. We first introduce three C1 functions α(t), ϕ(t) and γ(t) :(0,+ ) (0,+ ). ∞ → ∞ SupposethatthreeC1 functionsα(t),ϕ(t)andγ(t)satisfythefollowingconditions: (C1) α(t)>1, ϕ(t) and γ(t). (C2) α(t) and ϕ(t) satisfy the following system 2ϕ 2ϕ 1 2(m 1)MK ( α′) , n(m 1) − − ≥ n(m 1) − α  − −  n(m2ϕ−1) −α′ >0, ϕ2 +αϕ′ 0. (C3) γ(t) satisfies n(m−1) ≥ γ′ 2ϕ 1 ( α′) 0. γ − n(m 1) − α ≤ − (C4) α(t) and γ(t) are non-decreasing. 2. Main Results Our results state as follows. Theorem2.1. Let(Mn,g(x,t)) beacompletesolutiontotheRicciflow (1.2). t∈[0,T] Let Mn be complete under the initial metric g(x,0). Assume that Ric(x,t) K | | ≤ for some K > 0 and all t [0,T]. Suppose that there exist three functions α(t), ∈ ϕ(t) and γ(t) satisfy conditions (C1), (C2), (C3) and (C4). Given x M and R>0, let u be a positive solution of the nonlinear parabolic 0 ∈ equation (1.1) in the cube B := (x,t)d(x,x ,t) 2R,0 t T . Let 2R,T 0 v = m um−1 and v M. { | ≤ ≤ ≤ } m−1 ≤ If γα4 C for some constant C , Then for any (x,t) B , α−1 ≤ 2 2 ∈ 2R,T v 2 v 1 CaMm2 |∇ | α t Caα2 1+√KR +K + v − v ≤ R2 R2γ (cid:20) (cid:16) (cid:17) (cid:21) Local Aronson-B´enolan type gradient estimates 3 Kα2 +α2K a(m 1)+ √an. (2.1) − m 1 − If γ C for some constant Cp, Then for any (x,t) B , α−1 ≤ 2 2 ∈ 2R,T v 2 v 1 CaMm2α4 |∇ | α t Caα2 1+√KR +K + v − v ≤ R2 R2γ (cid:20) (cid:16) (cid:17) (cid:21) Kα2 +α2K a(m 1)+ √an. (2.2) − m 1 − holds on B , where a= n(m−1)p, and the constant C depends only on n. 2R,T n(m−1)+1 Letusshowsomespecialfunctionstoillustratethetheorem2.1holdsfordifferent circumstances and see appendix in section 5 for detailed calculation process. Remarks: 1. Li-Yau type: αn(m 1) n(m 1)2MK α(t)=constant, ϕ(t)= − + − , t α 1 − γ(t)=tθ with 0<θ 2. ≤ Then v 2 v 1 Cam2α4M |∇ | α t Caα2 1+√KR +K + v − v ≤ R2 R2γ (cid:20) (cid:16) (cid:17) (cid:21) Kα2 +α2K a(m 1)+ √an − m 1 − 2. Hamilton type: p n(m 1) α(t)=e2(m−1)MKt,ϕ(t)= − e4(m−1)MKt,γ(t)=te2(m−1)MKt. t Then v 2 v 1 Cam2α4M |∇ | α t Caα2 1+√KR +K + v − v ≤ R2 R2γ (cid:20) (cid:16) (cid:17) (cid:21) Kα2 +α2K a(m 1)+ √an. − m 1 − 3. Li-Xu type: p sinh((m 1)MKt)cosh((m 1)MKt) (m 1)MKt α(t)=1+ − − − − , sinh2((m 1)MKt) − ϕ(t)=2n(m 1)2MK[1+coth((m 1)MKt)], γ(t)=tanh((m 1)MKt). − − − Then v 2 v 1 Cam2M |∇ | α t Ca 1+√KR +K + v − v ≤ R2 R2γ (cid:20) (cid:16) (cid:17) (cid:21) Kα2 +α2K a(m 1)+ √an, − m 1 − where α(t) is bounded uniformly. p 4. Linear Li-Xu type: n(m 1) α(t)=1+(m 1)MKt, ϕ(t)= − +n(m 1)2MK, − t − γ(t)=(m 1)MKt. − 4 W.WANG,H.ZHOU,D.XIE Then v 2 v 1 Cam2α4M |∇ | α t Caα2 1+√KR +K + v − v ≤ R2 R2γ (cid:20) (cid:16) (cid:17) (cid:21) Kα2 +α2K a(m 1)+ √an. − m 1 − The local estimates above impply global estimates. Corollary 2.1. Let (Mn,g(0)) be a complete noncompact Riemannian manifold without boundary, and asuume g(t) evolves by Ricci flow in such a way that Ric | |≤ K for t [0,T]. Let u(x,t) be a positive solution to the equation (1.1), and let v = m ∈um−1 and v M. m−1 ≤ If l 1 and for (x,t) Mn (0,T], then ≤ ∈ × v 2 v Kα2 |∇ | α t Caα2K+α2K a(m 1)+ √an. v − v ≤ − m 1 − p 3. Preliminary Let v = m um−1 and put into equation (1.1), we get m−1 v =(m 1)v∆v+ v 2, (3.1) t − |∇ | which is equivalent to the following form: v v 2 t =(m 1)∆v+ |∇ | . (3.2) v − v Lemma 3.1. Assume that (Mn,g(x,t)) satisfies the hypotheses of Theorem 2.1. We introduce the differential operator =∂ (m 1)v∆. t L − − Let F = |∇v|2 αvt αϕ, where α=α(t)>1. Then we have v − v − n (F) (m 1) v2 +(m 1)α2K2+2(m 1)K v 2+2m v F L ≤ − − ij − − |∇ | ∇ ∇ i,j X v 2 v [(m 1)∆v]2+2(α 1)K|∇ | α′ t α′ϕ αϕ′. (3.3) − − − v − v − − Proof. Simple calculation shows v v 2 ∂ t = ∂ (m 1)∆v+ |∇ | t t v − v (cid:16) (cid:17) (cid:20) (cid:21) 2 v v 2 v 2v = (m 1)(∆v) + ∇ ∇ t + Ric( v, v) |∇ | t − t v v ∇ ∇ − v2 2 v = (m 1)(∆v) + ∇ (m 1)v∆v+ v 2 t − v ∇ − |∇ | v 2 h 2 i |∇ | (m 1)v∆v+ v 2 + Ric( v, v) − v − |∇ | v ∇ ∇ h v 2i∆v = (m 1)(∆v) +(m 1)|∇ | +2(m 1) v (∆v) t − − v − ∇ ∇ 2 v v 2 (m 1)λ v 2 v 4 2 + ∇ ∇|∇ | + − |∇ | |∇ | + Ric( v, v),(3.4) v v − v2 v ∇ ∇ Local Aronson-B´enolan type gradient estimates 5 and ∆ vt = ∆(vt)+2 i,jRijfij 2∇v∇vt vt∆v + 2|∇v|2vt, (3.5) v v − v2 − v2 v3 P (cid:16) (cid:17) where we use the fact that n (∆v) =∆(v )+2 R v , (3.6) t t ij ij i,j X ( v 2) =2 v (v )+2Ric( v,v). (3.7) t t |∇ | ∇ ∇ ∇ Combining (3.4) and (3.5), we have v v 2∆v 2 v v 2 t = (m 1)|∇ | +2(m 1) v (∆v)+ ∇ ∇|∇ | L v − v − ∇ ∇ v (cid:16) (cid:17) v 4 v v v ∆v v 2v |∇ | +2(m 1)∇ ∇ t +(m 1) t 2(m 1)|∇ | t − v2 − v − v − − v2 2 +2(m 1) R v + Ric( v, v). (3.8) ij ij − v ∇ ∇ i,j X Since v =(m 1) v∆v+(m 1)v (∆v)+ v 2, t ∇ − ∇ − ∇ ∇|∇ | then 2 v v 2 v 2∆v v 4 2(m 1) v (∆v)+ ∇ ∇|∇ | +(m 1)|∇ | |∇ | − ∇ ∇ v − v − v2 2 v 2v t = v v |∇ | . v∇ ∇ t− v v Substituting above identity and the following identity v v v 2v v 2(m 1)∇ ∇ t 2(m 1)|∇ | t = 2(m 1)v t logv − v − − v2 − ∇ v ∇ (cid:16) (cid:17) into (3.8), we have v 2 v 2v v t = v v |∇ | t +2(m 1)v t logv t L v v∇ ∇ − v v − ∇ v ∇ (cid:16) (cid:17) v ∆v (cid:16) (cid:17) 2 +(m 1) t ++2(m 1) R v + Ric( v, v). (3.9) ij ij − v − v ∇ ∇ i,j X On the other hand, similar calculations show v 2 2 v 2Ric( v, v) ∂ |∇ | = ∇ (m 1)v∆v+ v 2 + ∇ ∇ t v v ∇ − |∇ | v (cid:18) (cid:19) h i v 2 v 2 |∇ | (m 1)∆v+ |∇ | + − v − v (cid:20) (cid:21) v 2 2 = 2(m 1)∆v|∇ | +2(m 1) v (∆v)+ v v 2 − v − ∇ ∇ v∇ ∇|∇ | v 2 v 4 2Ric( v, v) (m 1)∆v|∇ | |∇ | + ∇ ∇ , (3.10) − − v − v2 v 6 W.WANG,H.ZHOU,D.XIE where we utilize the formula (3.7) in (3.10). By utilize Bochner’s formula, we have v 2 2v2 2 v∆( v) v v 2 v 2 2 v 4 ∆ |∇ | = ij + ∇ ∇ 2∇ ∇|∇ | ∆v|∇ | + |∇ | v v v − v2 − v2 v3 (cid:18) (cid:19) 2v2 v 2 2 v 2 = ij +2R |∇ | + v (∆v) ∆v|∇ | v ij v v∇ ∇ − v2 v 2 2 |∇ | (logv). (3.11) − ∇ v ∇ (cid:18) (cid:19) From (3.10) and (3.11), we obtain v 2 v 2 2 |∇ | = 2(m 1)∆v|∇ | + v v 2 2(m 1)R v 2 ij L v − v v∇ ∇|∇ | − − |∇ | (cid:18) (cid:19) v 4 v 2 2(m 1)v2 |∇ | +2(m 1)v |∇ | (logv) − − ij − v2 − ∇ v ∇ (cid:18) (cid:19) 2Ric( v, v) + ∇ ∇ . (3.12) v By utilize (3.9) and (3.12), we have v 2 v v (F)= |∇ | α t α′ t α′ϕ αϕ′ L L v − L v − v − − (cid:18) (cid:19) (cid:16) (cid:17) v 2 2 = 2(m 1)∆v|∇ | + v v 2 2(m 1)(v2 +αR v ) − v v∇ ∇|∇ | − − ij ij ij v 4 v 2 2(m 1)R v 2 |∇ | +2(m 1)v |∇ | (logv) − − ij|∇ | − v2 − ∇ v ∇ (cid:18) (cid:19) 2 v 2v v α v v +α|∇ | t 2α(m 1)v t (logv) t − v∇ ∇ v v − − ∇ v ∇ v 2(α 1) (cid:16) (cid:17) α(m 1)∆v t − Ric( v, v) α′ϕ αϕ′. (3.13) − − v − v ∇ ∇ − − It is not difficult to calculate that v 2 v 2(m 1)v |∇ | (logv) 2α(m 1) t (logv) − ∇ v ∇ − − ∇ v ∇ (cid:18) (cid:19) (cid:16) (cid:17) v 2 v = 2(m 1) v |∇ | α t − ∇ ∇ v − v (cid:20) (cid:21) = 2(m 1) v F, (3.14) − ∇ ∇ and 2 2 2 v v 2 α v v = v ( v 2 αv ) t t v∇ ∇|∇ | − v∇ ∇ v∇ ∇ |∇ | − 2 = v (Fv) v∇ ∇ v 2 = 2 v F +2F|∇ | . (3.15) ∇ ∇ v We deduce from (3.14) and (3.15) that v 2 v 2(m 1)v |∇ | (logv) 2α(m 1) t (logv) − ∇ v ∇ − − ∇ v ∇ (cid:18) (cid:19) (cid:16) (cid:17) Local Aronson-B´enolan type gradient estimates 7 2 2 + v v 2 α v v t v∇ ∇|∇ | − v∇ ∇ v 2 = 2m v F +2F|∇ | ∇ ∇ v v 2 v v 2 t = 2m v F +2 |∇ | α |∇ | , (3.16) ∇ ∇ v − v v (cid:18) (cid:19) and v 2 v 4 v v v 2 2(m 1)∆v|∇ | |∇ | α(m 1)∆v t +α t|∇ | − v − v2 − − v v v v 2 v v 2 v 4 v v v 2 v v 2 t t t t = 2|∇ | |∇ | |∇ | α |∇ | +α |∇ | v v − v − v2 − v v − v v v (cid:18) (cid:19) (cid:18) (cid:19) v v 2 v 4 v 2 = (2α+2) t|∇ | 3|∇ | α t . (3.17) v v − v2 − v (cid:16) (cid:17) From (3.16) and (3.17), we have v 2 v 2 2(m 1)v |∇ | (logv) 2α(m 1) t (logv)+ v v 2 − ∇ v ∇ − − ∇ v ∇ v∇ ∇|∇ | (cid:18) (cid:19) (cid:16) (cid:17) 2 v 2 v 4 v v v 2 α v v +2(m 1)∆v|∇ | |∇ | α(m 1)∆v t +α t|∇ | − v∇ ∇ t − v − v2 − − v v v v v 2 2 v 2 = 2m v F t |∇ | +(1 α) t ∇ ∇ − v − v − v (cid:18) (cid:19) (cid:16) (cid:17) 2m v F [(m 1)∆v]2 for α>1. (3.18) ≤ ∇ ∇ − − Substituting (3.18) into (3.13), we arrive at (F) 2(m 1)(v2 +αR v ) 2(m 1)R v 2 L ≤− − ij ij ij − − ij|∇ | v 2 +2m v F [(m 1)∆v]2 2(α 1)R |∇ | α′ϕ αϕ′. (3.19) ij ∇ ∇ − − − − v − − Further, applying Young’s inequality α 1 R v R2 + v2 | ij|| ij|≤ 2 ij 2α ij to (3.19), we conclude We complete the proof of Lemma 3.1. (cid:3) Lemma 3.2. Suppose that (Mn,g(t)) satisfies the hypotheses of Theorem t∈[0,T] 2.1. We also assume that α(t)>1 and ϕ(t)>0 satisfy the following system 2ϕ 2ϕ 1 2(m 1)MK ( α′) , n(m 1) − − ≥ n(m 1) − α  − −  n(m2ϕ−1) −α′ >0, (3.20) ϕ2 +αϕ′ 0, and α(t) is non-decreasing. Then n(m−1) ≥ n ϕ 2 2ϕ 1 F (m 1) v + δ α′ F ij ij L ≤− − n(m 1) − n(m 1) − α i,j (cid:20) − (cid:21) (cid:20) − (cid:21) X 8 W.WANG,H.ZHOU,D.XIE v 2 +(m 1)α2K2+2(α 1)K|∇ | +2m v F [(m 1)∆v]2. (3.21) − − v ∇ ∇ − − Proof. By utilizing the unit matrix (δ ) and (3.3), we obtain ij n×n n ϕ ϕ2 2ϕ (F) (m 1) v2 + δ2 + + ∆v L ≤ − − ij n(m 1) ij n(m 1) n Xi,j h − i − v 2 +(m 1)α2K2+2(m 1)KM|∇ | +2m v F − − v ∇ ∇ v 2 v [(m 1)∆v]2+2(α 1)K|∇ | α′ t α′ϕ αϕ′. − − − v − v − − Applying (3.2) to above inequality, we have n ϕ 2ϕ v 2 (F) (m 1) v2 + δ2 2(m 1)MK |∇ | L ≤ − − ij n(m 1) ij − n(m 1) − − v Xi,j h − i h − i 2ϕ v 2ϕ αϕ ϕ2 + α′ t + α′ + n(m 1) − v n(m 1) − α n(m 1) h − i h − i − 2ϕ αϕ v 2 α′ +(m 1)α2K2+2(m 1)KM|∇ | − n(m 1) − α − − v h − i v 2 +2m v F [(m 1)∆v]2+2(α 1)K|∇ | α′ϕ αϕ′. ∇ ∇ − − − v − − Again using (3.20), we follows (3.21). (cid:3) Lemma 3.3. Let G=γ(t)F. Then 1 γ′ 2ϕ 1 G G2+ α′ G L ≤ −aα2γ γ − n(m 1) − α (cid:20) (cid:18) − (cid:19) (cid:21) 2(α 1) v 2 γ(m 1)(α 1)2 v 4 − |∇ | G − − |∇ | − nα2 v − nα2 v2 v 2 +(m 1)α2γK2+2γ(α 1)K|∇ | +2m v G, (3.22) − − v ∇ ∇ where a= n(m−1) . n(m−1)+1 Proof. Sample calculation gives G = γ F +γ′F L L ϕ 2ϕ 1 γ′ (m 1)γ v2 + δ2 + α′ + G ≤ − − ij n(m 1) ij − n(m 1) − α γ (cid:20) − (cid:21) (cid:20) (cid:18) − (cid:19) (cid:21) v 2 +(m 1)α2γK2+2γ(α 1)K|∇ | +2m v G − − v ∇ ∇ γ[(m 1)∆v]2. (3.23) − − Since ϕ 1 v2 + δ2 (∆v+ϕ) ij n(m 1) ij ≥ n (cid:20) − (cid:21) 1 v 2 2 = F +(m 1)(α 1)|∇ | , (3.24) nα2(m 1)2 − − v − (cid:20) (cid:21) Local Aronson-B´enolan type gradient estimates 9 and F α 1 v 2 (m 1)∆v = − |∇ | ϕ − −α − α v − F . (3.25) ≤ −α Therefore, we follow that from (3.23), (3.24) and (3.25) γ v 2 2 G F +(m 1)(α 1)|∇ | L ≤ −nα2(m 1) − − v − (cid:20) (cid:21) 2ϕ 1 γ′ + α′ + G+(m 1)α2γK2 − n(m 1) − α γ − (cid:20) (cid:18) − (cid:19) (cid:21) v 2 G2 +2γ(α 1)K|∇ | +2m v G . (3.26) − v ∇ ∇ − α2γ From (3.26), we infer (3.22). The proof is complete. (cid:3) 4. Proof of Main Results In this section, we will prove our main results. Proof of Theorem 2.1. Now let ϕ(r) be a C2 function on [0, ) such that ∞ 1 if r [0,1], ϕ(r)= ∈ (0 if r [2, ), ∈ ∞ and ϕ′(r) 0 ϕ(r) 1, ϕ′(r) 0, ϕ′′(r) 0, | | C, ≤ ≤ ≤ ≤ ϕ(r) ≤ where C is an absolute constant. Let define by d(x,x ,t) ρ(x,t) φ(x,t)=ϕ(d(x,x ,t))=ϕ 0 =ϕ , 0 R R (cid:18) (cid:19) (cid:18) (cid:19) whereρ(x,t)=d(x,x ,t). Byusingthemaximumprinciple,theargumentofCalabi 0 [2] allows us to suppose that the function φ(x,t) with support in B , is C2 at 2R,T the maximum point. By utilize the Laplacian theorem, we deduce that φ2 C |∇ | , (4.1) φ ≤ R2 C ∆φ (1+√KR), (4.2) − ≤ R2 For any 0 T T, let H = φG and (x ,t ) be the point in B at which ≤ 1 ≤ 1 1 2R,T1 G attain its maximum value. We can suppose that the value is positive, because otherwise the proof is trivial. Then at the point (x ,t ), we infer 1 1 G (H) 0, G= φ. (4.3) L ≥ ∇ −φ∇ BytheevolutionformulaofthegeodesiclengthundertheRicciflow[4],wecalculate ρ 1 dρ ρ φ G= Gφ′ =Gφ′ Ric(S,S)ds t − R R dt R (cid:16) (cid:17) (cid:16) (cid:17)Zγt1 ρ 1 ρ Gφ′ K ρ Gφ′ K G√CK , ≤ R R 2 ≤ R 2 ≤ 2 (cid:16) (cid:17) (cid:16) (cid:17) 10 W.WANG,H.ZHOU,D.XIE whereγ isthegeodesicconnectingxandx underthemetricg(t ), S isthe unite t1 0 1 tangent vector to γ , and ds is the element of the arc length. Hence, by applying t1 (4.2), we have φ2 0 (H) φ G (m 1)G ∆φ 2|∇ | +φ G t ≤ L ≤ L − − − φ (cid:18) (cid:19) 1 γ′ 2ϕ 1 φG2+ α′ φG ≤ −aα2γ γ − n(m 1) − α (cid:20) (cid:18) − (cid:19) (cid:21) 2(α 1) v 2 γ(m 1)(α 1)2 v 4 − |∇ | φG − − |∇ | φ − nα2 v − nα2 v2 v 2 +(m 1)α2γφK2++2γφ(α 1)K|∇ | +2mφ v G − − v ∇ ∇ φ2 (m 1)G ∆φ 2|∇ | +√CKG (4.4) − − − φ (cid:18) (cid:19) Multiply φ, we have 1 γ′ 2ϕ φ 0 φ2G2+ φ α′ φG ≤ −aα2γ γ − n(m 1) − α (cid:20) (cid:18) − (cid:19) (cid:21) 2(α 1) v 2 γ(m 1)(α 1)2 v 4 − |∇ | φ2G − − |∇ | φ2 − nα2 v − nα2 v2 v 2 +(m 1)α2γφ2K2+2γφ2(α 1)K|∇ | − − v φ φ2 2mφ2∇ G v (m 1)φG ∆φ 2|∇ | +√CKφG − φ ∇ − − − φ (cid:18) (cid:19) Further using the inequality Ax2+Bx B2 with A>0, we have ≥−4A 2(α 1) v 2 φ nm2α2 φ2 − |∇ | φ2G 2mφ2∇ G v |∇ | φG, − nα2 v − φ ∇ ≤ 2(α 1) φ − γ(m 1)(α 1)2 v 4 v 2 nα2K2 − − |∇ | φ2++2γφ2(α 1)K|∇ | φ2γ. − nα2 v2 − v ≤ m 1 − Hence, we deduce that 1 γ′ 2ϕ φ nm2α2 φ2 0 φ2G2+ φ α′ + |∇ | ≤ −aα2γ γ − n(m 1) − α 2(α 1) φ (cid:20) (cid:18) − (cid:19) − φ2 +(m 1) ∆φ 2|∇ | +√CK φG − − φ (cid:18) (cid:19) (cid:21) nα2K2 +(m 1)α2K2φ2γ+ φ2γ. (4.5) − m 1 − Combine (4.1), (4.2) and (4.5), we have 1 γ′ 2ϕ φ Cm2α2 0 φ2G2+ φ α′ + ≤ −aα2γ γ − n(m 1) − α R2(α 1) C(m 1) h (cid:0) − (cid:1) − + − (1+√KR)+√CK φG R2 nα2K2 i +(m 1)α2K2φ2γ+ φ2γ. − m 1 −

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.