ebook img

Local Approximation Techniques in Signal and Image Processing PDF

576 Pages·2006·2.57 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Local Approximation Techniques in Signal and Image Processing

Bellingham, Washington USA Library of Congress Cataloging-in-Publication Data Katkovnik, V. IA. (Vladimir IAkovlevich). Local approximation techniques in signal and image processing / Vladimir Katkovnik, Karen Egiazarian, and Jaakko Astola. p. cm. Includes bibliographical references and index. ISBN: 0-8194-6092-3 (alk. paper) 1. Signal processing--Mathematics. 2. Image processing--Mathematics. 3. Approximation theory. I. Egiazarian, K. (Karen), 1959- II. Astola, Jaakko. III. Title. TK5102.9.K38 2006 621.382'2--dc22 2006042318 Published by SPIE—The International Society for Optical Engineering P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: +1 360 676 3290 Fax: +1 360 647 1445 Email: [email protected] Web: http://spie.org Copyright © 2006 The Society of Photo-Optical Instrumentation Engineers All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher. The content of this book reflects the work and thought of the author(s). Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon. Printed in the United States of America. The cover image: Spring in Tampere, Finland – May 2006 by Alessandro Foi. Contents Preface xi Notations and Abbreviations xv 1 Introduction 1 1.1 Linear Local Approximation 2 1.1.1 Windowing 2 1.1.2 Nonparametric estimation 3 1.1.3 Scale 5 1.1.4 Ideal scale 8 1.1.5 Adaptive varying scale 9 1.2 Anisotropy 11 1.2.1 Univariate case 11 1.2.2 Multivariate case 12 1.3 Nonlinear Local Approximation 14 1.3.1 Likelihood and quasi-likelihood 14 1.3.2 Robust M-estimation 16 1.3.3 Adaptive varying scale 16 1.4 Multiresolution Analysis 17 1.5 Imaging Applications 17 1.6 Overview of the Book 18 2 Discrete LPA 21 2.1 Introduction 22 2.1.1 Observation modeling 22 2.1.2 Classes of signals 23 2.1.3 Multi-index notation 26 2.2 Basis of LPA 28 2.2.1 Idea of LPA 28 2.2.2 Windowing and scale 34 2.2.3 Estimate calculation 36 2.2.4 Multivariate estimates 37 2.2.5 Examples 38 2.3 Kernel LPA Estimates 47 2.3.1 Estimate of signal 47 2.3.2 Estimate of derivative 48 2.3.3 Reproducing polynomial kernels 48 v vi Contents 2.4 Nonparametric Regression 50 2.4.1 Regression function 50 2.4.2 Nadaraya-Watson estimate 51 2.5 Nonparametric Interpolation 53 3 Shift-Invariant LPA Kernels 57 3.1 Regular Grid Kernels 57 3.2 Vanishing Moments 60 3.3 Frequency Domain 62 3.3.1 Frequency response 62 3.3.2 Discrete-time Fourier transform 65 3.3.3 Vanishing moments 67 3.3.4 Discrete Fourier transform 68 3.3.5 Examples 71 3.4 Numerical Shift-Invariant Kernels 75 3.4.1 Square uniform window 76 3.4.2 Gaussian window 80 3.5 Numerical Differentiation 83 3.5.1 Univariate differentiation 84 3.5.2 Multivariate differentiation 87 4 Integral LPA 91 4.1 Integral Kernel Estimators 91 4.1.1 Integral LPA 91 4.1.2 Multivariate kernels and estimates 96 4.1.3 Limit LPA estimates 97 4.1.4 Frequency domain 97 4.2 Analytical Kernels 100 4.2.1 1D case 100 4.2.2 2D case 104 4.3 Generalized Singular Functions∗ 107 4.3.1 Gaussian smoothing kernels 107 4.3.2 Univariate Dirac delta function 108 4.3.3 Multivariate Dirac delta function 110 4.3.4 Dirac’s delta sequences 111 4.4 Potential Derivative Estimates 114 5 Discrete LPA Accuracy 121 5.1 Bias andVariance of Estimates 122 5.1.1 Main results 122 5.1.2 Discussion 125 5.2 Ideal Scale 126 5.2.1 Varying scale 126 5.2.2 Invariant scale 131 5.2.3 Example 132 5.3 Accuracy of Potential Differentiators∗ 136 Contents vii 6 Adaptive-Scale Selection 137 6.1 ICI Rule 139 6.1.1 Foundations 139 6.1.2 LPA-ICI algorithm 145 6.1.3 Complexity 147 6.1.4 Convergence 147 6.1.5 Threshold adjustment 148 6.2 Multiple-Window Estimation 151 6.2.1 Multiwindow estimate 152 6.2.2 Combined-window estimate 153 6.3 Denoising Experiments 154 6.3.1 Univariate signals 154 6.3.2 Binary imaging 167 7 Anisotropic LPA 173 7.1 Directional Signal Processing 173 7.1.1 Recent developments 173 7.1.2 Directional LPA-ICI approach 180 7.2 Directional LPA 187 7.2.1 Polynomials 188 7.2.2 Directional windowing 189 7.2.3 Rotation 190 7.2.4 Calculations 193 7.2.5 Shift-invariant kernels 194 7.2.6 Frequency domain 196 7.3 Numerical Directional Kernels 198 7.3.1 Sectorial kernels 198 7.3.2 Line-wise kernels 205 8 Anisotropic LPA-ICI Algorithms 207 8.1 Accuracy Analysis∗ 207 8.1.1 Polynomial smoothness 207 8.1.2 Vanishing moments 211 8.1.3 Taylor series 212 8.1.4 Basic estimates 213 8.1.5 Rotated estimates 217 8.2 Adaptive-Scale Algorithms 219 8.2.1 Calculations 219 8.2.2 Recursive algorithms 221 8.2.3 Algorithm complexity 224 8.3 Directional Image Denoising 224 8.3.1 Criteria and algorithms 224 8.3.2 Experiments 227 8.4 Directional Differentiation 236 8.4.1 Anisotropic gradient 237 8.4.2 Examples 242 viii Contents 8.5 Shading from Depth 253 8.6 Optical Flow Estimation 256 8.6.1 Optical flow equation 257 8.6.2 Velocity estimation 259 8.6.3 Experiments 261 9 Image Reconstruction 263 9.1 Image Deblurring 264 9.1.1 Blur modeling and deblurring 264 9.1.2 LPA deblurring 267 9.2 LPA-ICI Deblurring Algorithms 273 9.2.1 ICI adaptive scale 273 9.2.2 Algorithms 274 9.2.3 Performance study 277 9.3 Motion Deblurring 280 9.4 Super-Resolution Imaging 282 9.5 Inverse Halftoning 285 9.5.1 Error diffusion 286 9.5.2 Linear model of error diffusion 287 9.5.3 Anisotropic deconvolution 289 9.5.4 Simulation results 291 9.6 3D Inverse 294 9.6.1 Sectioning microscopy 294 9.6.2 Observation model 295 9.6.3 3D spatially adaptive inverse 299 9.6.4 Simulation 304 10 Nonlinear Methods 307 10.1 Why Nonlinear Methods? 307 10.1.1 Basic hypotheses 307 10.1.2 M-estimation 309 10.1.3 Statistical approach 311 10.1.4 Some distributions 312 10.2 Robust M-Estimation 319 10.2.1 Median estimates 320 10.2.2 Performance of M-estimates 323 10.2.3 Median in Gaussian noise (simulation) 326 10.2.4 Theory of minimax estimation∗ 330 10.2.5 Median in non-Gaussian noise (simulation) 337 10.3 LPA-ICI Robust M-Estimates 339 10.3.1 Performance of LPA M-estimates 340 10.3.2 ICI algorithm for M-estimates 342 10.4 NonlinearTransform Methods 343 10.4.1 Model simplification 343 10.4.2 Variance stabilization 345 Contents ix 11 Likelihood and Quasi-Likelihood 351 11.1 Local Maximum Likelihood 351 11.1.1 Parametric ML 351 11.1.2 Nonparametric ML 353 11.1.3 Theory for local ML 355 11.1.4 LPA-ICI algorithms 358 11.2 Binary and Counting Observations 361 11.2.1 Bernoulli regression 361 11.2.2 Poisson regression 364 11.3 Local Quasi-Likelihood 366 11.3.1 Parametric quasi-likelihood 367 11.3.2 Nonparametric quasi-likelihood 369 11.4 Quasi-Likelihood LPA-ICI Algorithms 371 11.4.1 Zero-order regression 371 11.4.2 High-order regression 372 12 Photon Imaging 379 12.1 Direct Poisson Observations 381 12.1.1 Anscombe transform 381 12.1.2 Local quasi-likelihood 382 12.1.3 Recursive LPA-ICI(AV) algorithm 382 12.1.4 Numerical experiments 386 12.2 Indirect Poisson Observations 390 12.2.1 ML pure inverse 390 12.2.2 Richardson-Lucy method 391 12.2.3 EM pure inverse 393 12.2.4 Regularized inverse 396 12.2.5 LPA-ICI filtering 397 12.3 Local ML Poisson Inverse 400 12.3.1 Local ML for indirect observations 400 12.3.2 Linear inverse plus LPA-ICI filtering 401 12.3.3 Numerical experiments 405 12.4 ComputerizedTomography 407 12.4.1 Emission tomography 407 12.4.2 Transmission tomography 410 12.4.3 Adaptive LPA-ICI algorithms 422 13 Multiresolution Analysis 427 13.1 MR Analysis:Basic Concepts 427 13.1.1 Orthogonal series 428 13.1.2 Wavelets 430 13.2 Nonparametric LPA Spectrum 440 13.2.1 Finite-difference LPA spectrum 441 13.2.2 Linear independence 443 13.2.3 Gram-Schmidt orthogonalization 444 13.2.4 Orthogonal LPA spectrum analysis 445

Description:
This book deals with a wide class of novel and efficient adaptive signal processing techniques developed to restore signals from noisy and degraded observations. These signals include those acquired from still or video cameras, electron microscopes, radar, X rays, or ultrasound devices, and are used
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.