ebook img

LIVE-LINE WORKING AND EVALUATION OF RISK ON 400kV TRANSMISSION LINE PDF

197 Pages·2017·2.92 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview LIVE-LINE WORKING AND EVALUATION OF RISK ON 400kV TRANSMISSION LINE

LIVE-LINE WORKING AND EVALUATION OF RISK ON 400kV TRANSMISSION LINE A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER FOR THE DEGREE OF DOCTOR OF PHILOSOPHY FACULTY OF SCIENCES AND ENGINEERING 2017 Pietro Martini School of Electrical and Electronic Engineering 2 Table of Contents ABSTRACT…………………………………………………………………………....19 DECLERATION ……………………………………………………………………...20 COPY RIGHT STATEMENT …………………………………………………….....21 AKNOWLEDGMENT ……………………………………………………………….22 TERMS, DEFINATION…………………………………………………………… 23 CHAPTER 1............................................................................................................... 27 1.1. Introduction ....................................................................................................... 27 1.2. Introduction to Live-line Working ..................................................................... 28 1.3. Live-line Working Tools and Methods .............................................................. 28 1.3.1. Hot stick ..................................................................................................... 28 1.3.2. Bare Hand (Potential Method) .................................................................... 29 1.3.3. Helicopter Techniques ................................................................................ 30 1.3.4. Ground-Based Robots ................................................................................. 31 1.4. Live-line Working Risk and Challenges ............................................................ 32 1.5. Minimum Approach Distance (MAD) ............................................................... 34 1.6. Objectives and Conclusion ................................................................................ 35 CHAPTER 2............................................................................................................... 37 2.1. IEC 61472, Live-line Working Safety Standards ............................................... 37 2.2. IEEE 516-1995 Standard ................................................................................... 39 2.3. IEC 61472 Description of Calculation Procedure............................................... 41 3 2.3.1. Correction Factors ...................................................................................... 44 2.4. Impact of Correction Factors on MAD .............................................................. 52 2.4.1. At Tower .................................................................................................... 53 2.4.2. At Mid-Span ............................................................................................... 54 2.5. Discussion of Standards .................................................................................... 56 CHAPTER 3............................................................................................................... 59 3.1. Introduction ....................................................................................................... 59 3.2. Travelling Waves .............................................................................................. 60 3.2.1. Wave Velocity on Overhead Lines.............................................................. 61 3.2.2. Wave Velocity on Cables............................................................................ 65 3.2.3. Wave Reflection and Line Characteristics Impedance ............................... 67 3.3. Transient Classification ..................................................................................... 70 3.4. Lightning Overvoltage....................................................................................... 71 3.5. Review of Main Sources of Switching Overvoltages ......................................... 71 3.5.1. Line Energisation, re-energisation and Disconnection: ................................ 72 3.6. Switching Impulse Strength ............................................................................... 82 3.6.1. Effect of Wave shape .................................................................................. 82 3.6.2. The “U-Curve” ........................................................................................... 84 3.6.3. Wave Polarity ............................................................................................. 87 3.6.4. Effect of Atmospheric Conditions ............................................................... 89 3.7. Discussion and Conclusion ................................................................................ 90 CHAPTER 4............................................................................................................... 92 4 4.1. Introduction ....................................................................................................... 92 4.2. Simulation Methodology ................................................................................... 93 4.2.1. PSCAD Goodness-of-Fit Testing for Weibull Distribution.......................... 96 4.3. Parameters Influencing the Overvoltage on Transmission Line ....................... 98 4.3.1. Transmission Line Effect ............................................................................ 99 4.3.2. Type and Length of cable Section ............................................................. 100 4.3.3. Cable Section Position on transmission Line ............................................. 102 4.3.4. Capacitor bank.......................................................................................... 107 4.4. Network for Overvoltage Studies..................................................................... 112 4.5. Overvoltage Simulation Results....................................................................... 115 4.6. Calculation of Minimum Approach Distance ................................................... 120 4.7. Influence of Atmospheric Conditions .............................................................. 123 4.8. Influence of Floating object on Minimum approach distance ........................... 126 4.9. Discussion ....................................................................................................... 129 CHAPTER 5............................................................................................................. 131 5.1. Introduction ..................................................................................................... 131 5.2. Live-line Working Risk Evaluation ................................................................. 132 5.3. Risk Assessment ............................................................................................. 133 5.4. Methodology for Risk Assessment (Standard Switching Transient) ................. 134 5.4.1. Stress on the gap ....................................................................................... 135 5.4.2. Strength of the gap.................................................................................... 136 5.4.3. Intersection area ....................................................................................... 138 5 5.5. Methodology for Risk Assessment (Non-standard Switching Transient) .......... 140 5.6. Evaluation of Risk Based on Simulation Results.............................................. 142 5.7. Discussion: ...................................................................................................... 147 CHAPTER 6............................................................................................................. 149 6.1. Conclusion ...................................................................................................... 149 6.2. Impact of different Parameters on Minimum Approach Distance ..................... 151 6.3. Future Work .................................................................................................... 153 References......................................................................................................................156 7. Appendices........................................................................................................ 166 Word Count: 43474 6 Table of Figures Figure 1-1: Live-Line Work Using Hot sticks, A: Fibre Glass Ladder, B: Hot Stick, C: Bare Hand [1.12] ....................................................................................... 29 Figure 1-2: Live-Line Work Bare Hand or Potential Method, Where the Linesmen Are at Same Potential as the Live Part and Isolated From the Earth [1.13] ............ 30 Figure 1-3: Live Men on 400kV Using the Live-lines Helicopter Method (Pictures Provided by National Grid) ........................................................................ 30 Figure 1-4: Single Pick Robotic Arm which captures the Energized Conductor above the H-Frame Structure [1.14-1.15]. .................................................................. 31 Figure 1-5: Typical Live-Line Working Task [IEC 624/13].......................................... 35 Figure 2-1: Flow Chart Illustrating the Calculation Procedure for the Minimum Approach Distance .................................................................................... 40 Figure 2-2: Flow Chart Illustrating the Calculation Procedure for the Minimum Approach Distance .................................................................................... 42 Figure 2-3: Electrical Distance for 0-1000m altitude at L6 tower, With and Without Floating Object .......................................................................................... 53 Figure 2-4: Electrical Distance for 0-1000m Altitude at Mid-span L6 Tower, With and Without Floating Object ............................................................................ 54 Figure 3-1: Pi-section Presentation of Overhead Line and Cable .................................. 61 Figure 3-2: Small Section of Transmission Line ........................................................... 61 Figure 3-3: Simple PSCAD Power System Model ........................................................ 62 Figure 3-4: Surge travelling time: Top: E_sending; The Voltage at the Sending and Bottom: E_receiving; The Voltage at the Receiving End of the Line .......... 65 7 Figure 3-5: National Grid direct buried cable diagram .................................................. 65 Figure 3-6: Impulse Generator Used in PSCAD ........................................................... 66 Figure 3-7: Voltage at Sending Point (Blue Curve) Due to Current Impulse where Ea and Eb are the sending and receiving voltages respectively .............................. 67 Figure 3-8: PSCAD Simulation Travelling Wave; Top: Voltage at Beginning, Bottom: Voltage at the End of Transmission Line ................................................... 68 Figure 3-9: Behaviour of Voltage Travelling Wave at Transition Point ........................ 68 Figure 3-10: Sum of reflected voltage and current and sending waves .......................... 73 Figure 3-11: Voltage at The Sending and Receiving End Due to Energisation of 60km Line on 400kV System............................................................................... 75 Figure 3-12: PSCAD Simulation Model of Trapped Charge ......................................... 77 Figure 3-13: Energising of a Line, Top; Without Trapped Charge, Bottom; With Trapped Charge ....................................................................................................... 77 Figure 3-14: Voltage Due to Top; Energisation, Middle; Re-energisation, Bottom; Disconnection ............................................................................................ 79 Figure 3-15: Oscillatory Transient Due to Interruption of Fault Current on PSCAD Model- ES: Voltage Sending Point, EL: Voltage along the Line, Earc: Circuit Breaker Arc Voltage. ..................................................................... 81 Figure 3-16: Standards Switching Impulse Where V50 is a half the time to crest of Crest of a Transient Wave [4.1] .......................................................................... 82 Figure 3-17: U-Curves Obtained with Impulse Voltages of Various Time-to-Crests (Tcr µs) Applied to Rod-Plane Gaps. Atmospheric Humidity in These Experiments Was Varied [3.22, 3.23]......................................................... 85 Figure 3-18: A; Switching Impulse Flashover Voltage of Rod-Plane Gap, B; Estimation of CRIEPI’s Equation ................................................................................ 86 8 Figure 3-19: Rod-Plane Gap; 1- Minute Critical Withstand AC and DC Voltages; 50% Percent Spark Over Voltage with Standard and Long Front Impulses [3.26]. .................................................................................................................. 88 Figure 4-1: Model of Event Occurrence in Simulation ................................................. 94 Figure 4-2: Switching Overvoltage Distribution (pu).................................................... 94 Figure 4-3: Overvoltage Weibull Distribution Plot ....................................................... 97 Figure 4-4: Sample PSCAD Model of Transmission Line ............................................ 98 Figure 4-5: Overhead Model ...................................................................................... 100 Figure 4-6: PSCAD Model of Line-Cable Combination ............................................. 100 Figure 4-7: Change of Overvoltage at Beginning and End of Cable Section Due to Changing the Length ................................................................................ 101 Figure 4-8: Overvoltage at Beginning and End of Cable Section vs. Cable Type ........ 102 Figure 4-9: Schematic Model of Transmission Line ................................................... 103 Figure 4-10: Time Required for Wave to Travel along the Cable................................ 103 Figure 4-11: Overvoltage, Sending (Blue Curve) And Receiving (Green Curve) With Cable Section at Beginning of the Line .................................................... 105 Figure 4-12: Schematic Model of Transmission Line with Cable Section Place in the Middle of the Line ................................................................................... 106 Figure 4-13: Overvoltage, Sending (Blue Curve) and Receiving (Green Curve) With Cable Section at Middle of the Line ......................................................... 106 Figure 4-14: Maximum Overvoltage, Sending (Blue Curve) and Receiving (Green Curve) with Cable-Line at End of Transmission Line ............................... 107 Figure 4-15: Series Capacitor Bank Modelling with a 41.91µF series Capacitor ......... 109 Figure 4-16: Overvoltage with 20% Series Compensation .......................................... 110 Figure 4-17: Overvoltage with 50% Series Compensation .......................................... 111 Figure 4-18: Overvoltage with 80% Series Compensation .......................................... 111 9 Figure 4-19: A; PSCAD Model of Transmission Line, B; Schematic diagram of the network ................................................................................................... 113 Figure 4-20: Top; P-E, Bottom; P-P. Influence of Length of Transmission Line on the Minimum Approach Distance .................................................................. 125 Figure 4-21: Top; P-E, Bottom; P-P - Minimum Approach Distance Influenced by Altitude and Fault Levels ......................................................................... 126 Figure 5-1: Risk and Hazard Explanation [5.1]........................................................... 131 Figure 5-2: Risk Management Process ....................................................................... 132 Figure 5-3: Live-Line Working Risk Evaluation Process ............................................ 134 Figure 5-4: Switching Overvoltage Distribution ......................................................... 135 Figure 5-5: Flowchart Illustrating the Steps Undertaken for Calculation of Gap Strength ................................................................................................................ 136 Figure 5-6: Air Gap Voltage Breakdown Probability .................................................. 138 Figure 5-7: Combination of Air Gap Voltage Breakdown Probability and Switching Overvoltage Distribution.......................................................................... 139 Figure 5-8: Risk as the Function of Time to Crest ...................................................... 142 Figure 5-9: Risk of Failure as a Function of Time to Crest on Different Towers for Top: P-E and Bottom: P-P Voltage................................................................... 145 Figure 5-10: Risk of Failure for P-E Voltage as the Function of Changing the Gap Size, Bottom: The Zoom in Graph of the Top Graph ........................................ 146 Figure 7-1: Conductor Coordinates of Overhead Line- Refer to Table 59 ................... 169 Figure 7-2: PSCAD Fault Type and Time Selection Modules ..................................... 171 Figure 7-3: PSCAD Overhead Line Model ................................................................. 171 Figure 7-4: P-E Calculation Design ............................................................................ 172 Figure 7-5: P-P Calculation Modules ......................................................................... 172 10 Figure 7-6: Rod to Plane Sparkover versus Gap Length D, CRIEPI_ Figure 5-2 [2.23] ................................................................................................................ 193 Figure 7-7: Switching Impulse Flashover Voltage of Rod-Plane Gap, Estimation of CRIEPI’s Equation .................................................................................. 194

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.