ebook img

Live 3D Reconstruction on Mobile Phones PDF

142 Pages·2016·33.75 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Live 3D Reconstruction on Mobile Phones

Research Collection Doctoral Thesis Live 3D Reconstruction on Mobile Phones Author(s): Tanskanen, Petri Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010636796 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 23309 Live 3D Reconstruction on Mobile Phones A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH Z(cid:252)rich (Dr. sc. ETH Z(cid:252)rich) presented by Petri Tanskanen MSc ETH in Computer Science ETH Z(cid:252)rich born 03.04.1984 citizen of Berikon AG and Finland accepted on the recommendation of Prof. Marc Pollefeys Prof. Otmar Hilliges Prof. Margarita Chli 2016 Abstract This thesis presents a system for mobile devices with a single cam- era and an inertial measurement unit that allows to create dense 3D models. The whole process is interactive, the reconstruction is in- crementally computed during the scanning process and the user gets direct feedback of the progress. The system (cid:28)lls the gap in currently existingcloud-basedmobilereconstructionservicesbygivingtheuser a preview directly on the phone without having to upload the images to a server. The on-device reconstruction enables new applications where it is not desirable to send the raw images to a remote server due to security or privacy reasons. In addition, since the system is actively analyzing the scanning process, it can use the inertial sensor data to estimate the objects real-world absolute scale. This is not possible by only processing the images on a server. A novel visual inertial odometry algorithm that uses the Extended Kalman Filter framework to directly fuse image intensity values with theinertialmeasurementstoestimatethecameramotionisproposed. Thefusionatthislowlevelcombinestheadvantagesofthehighaccu- racy from direct photometric error minimization with the robustness tofastmotionswhenusinginertialsensors. Thankstotheconstrained modelofthe(cid:28)lter,itispossibletotracksceneswhereotherapproaches usingexternalcorrespondencealgorithmswillfail. Themethodworks on a sparse set of image areas and can be e(cid:30)ciently implemented on mobile devices. iii An e(cid:30)cient point cloud fusion algorithm is proposed that is based on a con(cid:28)dence weight computed from photometric and geometric properties to accurately combine depth measurements from di(cid:27)erent viewpoints into a consistent point cloud model. Thereby, visibility con(cid:29)icts are detected and corrected and the measurements are then averaged by using their their con(cid:28)dence scores as weight. The com- plete system is demonstrated to be working on various objects and in di(cid:27)erent environments and future applications are proposed. iv Zusammenfassung IndieserArbeitwirdeinSystemf(cid:252)rdieErstellungdichter3D-Modelle aufeinemMobilger(cid:228)tmiteinereinzelnenKameraundInertial-Sensoren beschrieben. Der gesamte Prozess ist interaktiv, die 3D Rekonstruk- tion wird inkrementell w(cid:228)hrend dem Scannen berechnet und dem Be- nutzer direkt als Feedback dargestellt. Das System f(cid:252)llt die L(cid:252)cke beibereitsexistierendenCloud-basiertenRekonstruktionsdienstenf(cid:252)r Smartphones, indem es dem Benutzer sofort eine Vorschau auf dem Ger(cid:228)t anzeigt, ohne die Bilder vorher auf einen Server hochladen zu m(cid:252)ssen. Die Rekonstruktion auf dem Ger(cid:228)t erm(cid:246)glicht neue Anwen- dungen, bei denen es aus Sicherheitsgr(cid:252)nden oder wegen dem Schutz derPrivatssph(cid:228)renichterw(cid:252)nschtist,dieRohbilderaneinenfremden Computerzusenden. DankdemdirektenVerarbeitenallerDatenauf dem Ger(cid:228)t w(cid:228)hrend dem Scannen, kann das System die Inertialsen- sordaten benutzen um die absolute Gr(cid:246)sse des eingescanntes Objekts zu berechnen. Dies ist nur durch die alleinige Analyse der Bilder auf einem Server gar nicht m(cid:246)glich. EinneuerAlgorithmusf(cid:252)rVisualInertialOdometrywirdvorgeschla- gen,welchesdasExtendedKalmanFilterFrameworkbenutzt,umdie Intensit(cid:228)tswerte eines Bildes mit den Inertialsensormessungen zu fu- sionieren. Das Verkn(cid:252)pfen der Daten auf diesem Level erm(cid:246)glicht es, die Vorteile der Genauigkeit der photometrischen Optimierung und der Robustheit gegen(cid:252)ber schnellen Bewegungen durch die Verwen- dung der Inertialdaten zu kombinieren. Durch die inherenten math- v ematischen Bedingungen im Modell des Filters funktioniert der Al- gorithmus in Umgebungen, in denen andere Systeme, die externe Correspondence-Algorithmenbenutzen,versagen. DievorgestelleMeth- odebenutztnurkleineTeiledesBildesf(cid:252)rdieBerechnungenundkann deswegen e(cid:30)zient auf einem mobilen Ger(cid:228)t implementiert werden. Ein e(cid:30)zienter Algorithmus f(cid:252)r die Fusion von Punktwolken wird be- schrieben. Die Methode benutzt Kon(cid:28)denzwerte basierend auf photometrischen und geometrischen Eigenschaften, um die berech- neten Tiefenwerte aus mehreren Blickwinkeln zu einem konsistenten Modell zu fusionieren. Dabei werden Sichtbarkeitskon(cid:29)ikte erkannt und aufgel(cid:246)st und die Messungen anschliessend, mit der Kon(cid:28)denz gewichtet, gemittelt. Die Funktionsf(cid:228)higkeit des kompletten Systems wird durch erfolgreiche 3D Scans von unterschiedlichen Objekten in verschiedenen Umgebungen demonstriert und zuk(cid:252)nftige Anwendun- gen vorgeschlagen. vi Acknowledgement Thisthesiswouldnothavebeenpossiblewithoutthesupportandcon- tributions of many persons. Therefore, I want to express my sincere gratitude to the following persons: First I would like to thank my advisor Prof. Marc Pollefeys, whose lecture about 3D photography I attended one year after he joined ETH and he got me so fascinated about the topic that I ended up doing my PhD study in his group. During all that time he was of greathelpandcontributedmanyinspringideasthat(cid:28)nallyledtothis thesis. My appreciation goes to Lorenz Meier for pushing the Pixhawk project that allowed me to get in touch with the research group and pursuing many long technical discussions with me. And to Dr. Friedrich Fraundorfer, Dr. Gim Hee Lee and Dr. Lionel Heng for the great (cid:28)rst two years in which we worked on micro aerial vehicles. Special thanks to Dr. Kalin Kolev, who enabled the Mobile Scanner project with his contributions and to all other collaborators on the project, Dr. Amaºl Delaunoy, Federico Camposeco, Olivier Saurer andPabloSpeciale. IwanttothankDr. TorstenSattlerandallpeers of the CVG for taking time for inspiring discussions and supporting each other. I want to especially thank my colleagues in the dark basement lab, DominikHonegger,NicoRanieriandallothersforourgreattimewith Fondue and fruitful discussions. And to Tobias N(cid:228)geli for the many vii upsanddownswithourjoinedprojectonvisualodometry,andtomy co-advisor Otmar Hilliges who spent long nights in helping us getting our work done. Thanks to the administration, Susanne Keller, who took care of so many problems on so many di(cid:27)erent levels, and Thorsten Steenbock for the numerous helpful discussions and his trust in me. Lastly,Iwanttothankmyparentsandmytwinsisterforsupporting me in many ways and making this thesis possible. viii Contents 1 Introduction 1 2 Foundations 7 2.1 Camera Models . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Pinhole Camera . . . . . . . . . . . . . . . . . 8 2.1.2 Fish Eye Camera . . . . . . . . . . . . . . . . . 10 2.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Non-linear Least Squares . . . . . . . . . . . . 12 2.2.2 Optimization on Manifolds . . . . . . . . . . . 15 2.2.3 Examples . . . . . . . . . . . . . . . . . . . . . 17 2.2.4 Filtering . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Stereo Depth Estimation . . . . . . . . . . . . . . . . . 22 2.3.1 Stereo . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.2 Depth Map Fusion . . . . . . . . . . . . . . . . 28 3 3D Reconstruction on Mobile Phones 31 3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 System Overview . . . . . . . . . . . . . . . . . . . . . 35 3.3 Visual Inertial Scale Estimation . . . . . . . . . . . . . 36 3.4 Visual Tracking and Mapping . . . . . . . . . . . . . . 43 3.4.1 Two View Initialization . . . . . . . . . . . . . 43 3.4.2 Patch Tracking and Pose Re(cid:28)nement . . . . . . 44 3.4.3 Sparse Mapping . . . . . . . . . . . . . . . . . 44 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.