Earth-ScienceReviews128(2014)147–168 ContentslistsavailableatScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Linking slab break-off, Hellenic trench retreat, and uplift of the Central and Eastern Anatolian plateaus T.F.Schildgena,⁎,C.Yıldırımb,D.Cosentinoc,d,M.R.Streckera aInstitutfürErd-undUmweltwissenschaften,andDFGLeibnizCenterforSurfaceProcessesandClimateStudies,UniversitätPotsdam,14476Potsdam-Golm,Germany bEurasiaInstituteofEarthSciences,IstanbulTechnicalUniversity,Istanbul,Turkey cDipartimentodiScienzeGeologiche,UniversitàdegliStudiRomaTre,Rome,Italy dIstitutodiGeologiaAmbientaleeGeoingeneria(IGAG-CNR),Rome,Italy a r t i c l e i n f o a b s t r a c t Articlehistory: TheCentralandEasternAnatolianplateausareintegralpartsoftheworld'sthirdlargestorogenicplateau.Inthe Received23January2013 pastdecade,geophysicalsurveyshaveprovidedinsightsintothecrust,lithosphere,andmantlebeneathEastern Accepted13November2013 Anatolia.Theseobservationsarenowaccompaniedbyrecentsurveys inCentralAnatoliaandnewdata Availableonline21November2013 constrainingthetimingandmagnitudeofupliftalongitsnorthernandsouthernmargins.Togetherwithpredic- tionsfromgeodynamicmodelsontheeffectsofvariousprocessesonsurfacedeformationanduplift,theobser- Keywords: vationscanbeintegratedtoidentifyprobablemechanismsofAnatolianPlateaugrowth. Anatolianplateau AchangeoverfromshorteningtoextensionalongthesouthernmarginofCentralAnatoliathatiscoevalwiththe Surfaceuplift NorthAnatolianFault startofupliftcanbemosteasilyassociatedwithoceanicslabbreak-offandtearing.Thisinterpretationissupport- Slabbreak-off edbytomography,deepseismicity(orlackthereof),andgravitydata.Basedonthetimingofuplift,geophysical EratosthenesSeamount andgeochemicalobservations,andmodelpredictions,slabbreak-offlikelyoccurredfirstbeneathEasternAnato- Hellenictrench liainmiddletolateMiocenetime,andpropagatedwestwardtowardCyprusbythelatestMiocene.Alternatively, thebreak-offnearCypruscouldhaveoccurredinlatePliocenetoearlyPleistocenetime,inassociationwithcol- lisionoftheEratosthenesSeamount(continentalfragment)withthesubductionzone.Upliftatthenorthern marginofCentralAnatoliaappearstoresultfromcrustalshorteningstartinginthelateMioceneorearlyPliocene, whichhasbeenlinkedtothebroadrestrainingbendoftheNorthAnatolianFault.Theuplifthistoryoftheinterior ofCentralAnatoliasincethelateMioceneisunclear,althoughshorteningthereappearstohaveendedbythelate Miocene,followedbyNE–SWextension.Thischangeinthedeformationstylebroadlycoincideswithfaster retreatoftheHellenictrenchaswellasupliftofthenorthernandsouthernmarginsofCentralAnatolia. Thesedifferenteventsthroughouttheplateaumaybelinked,asfasterretreatoftheHellenictrenchhasbeenpre- dictedtooccurafterslabbreak-off,whichcouldhaveinducedextensionofCentralAnatoliaandhelpedtoform theNorthAnatolianFaultthroughacceleratedwestwardmovementofAnatoliarelativetoEurasia.Correlative geochronologicevidencethatwesummarizeheresupportsthehypothesisthatthegeodynamicactivitythrough- outtheAegean–AnatoliandomainstartinginlatestMiocenetoearlyPliocenetimedefinesaseriesofeventsthat mayallbelinkedtoslabbreak-off. ©2013ElsevierB.V.Allrightsreserved. Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 2. PaleotopographyalongthesouthernmarginoftheCentralAnatolianPlateau(CentralTaurides) . . . . . . . . . . . . . . . . . . . . . . . . 149 2.1. Paleotopographicconstraintsat7Ma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 2.2. Paleotopographicconstraintsat5Ma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 2.3. Paleotopographicconstraintsat1.6Ma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 2.4. Creatingpaleotopographicmaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 3. Upliftconstraintsfromotherregions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 3.1. UpliftofthenorthernmarginoftheCentralAnatolianPlateau(Central Pontides) . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 3.2. UpliftoftheinterioroftheCentralAnatolianPlateau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 3.3. UpliftoftheEasternAnatolianPlateau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 ⁎ Correspondingauthor.Tel.:+493319775849. E-mailaddress:[email protected](T.F.Schildgen). 0012-8252/$–seefrontmatter©2013ElsevierB.V.Allrightsreserved. http://dx.doi.org/10.1016/j.earscirev.2013.11.006 148 T.F.Schildgenetal./Earth-ScienceReviews128(2014)147–168 4. Crustalscaledeformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 4.1. CrustalshorteningatthenorthernmarginoftheCentralAnatolianPlateau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 4.2. StructuralevolutionofthesouthernmarginoftheCentralAnatolianPlateau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 4.3. StructuralevolutionoftheinteriorofCentralAnatoliaandtheAegean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 4.4. StructuralevolutionofEasternAnatolia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5. Geophysicalperspectivesonthecrust,lithosphere,andsubductingslabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.1. Crustalshorteningandthickening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.2. EratosthenesSeamount(continentalfragment)subduction/collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 6.3. Lithosphericslabbreak-offandtearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 6.4. Lithosphericdelaminationanduppermantleconvection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 6.5. Linkingslabbreak-off,HellenictrenchretreatandupliftoftheCentralandEasternAnatolianplateaus . . . . . . . . . . . . . . . . . . 162 7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 1.Introduction marginsofbothregions(Figs.1and2).WhileEasternAnatoliaexhibits symmetricplateaumorphologyinaN–Stopographicswathprofile Awiderangeofgeodynamicmechanismshasbeeninvokedtoex- (Fig.1C),CentralAnatoliahasalowerinteriorcomparedtoitsmargins, plainthegrowthofhightopographyinorogenicbeltsandplateaus.In andshowsadistinctasymmetryinitsminimumelevations,reflecting somecases,asinglemechanismcapableofinducingbroad,regionalup- thepredominantlynorthward-directeddrainage(Fig.1B). lift,suchaslithosphericdelamination,hasemergedasafavoredinter- TheArabia–EurasiacollisionattheeasternendoftheAegean– pretation,forexampleintheSierraNevada(Jonesetal.,2004;Zandt AnatoliandomainisinferredtohavestartedinlateEocene/Oligocene etal.,2004)andthesouthernCentralAndes(KayandKay,1993;Kay time (e.g., Jolivet and Faccenna, 2000; Agard et al., 2005; Dargahi etal.,1994;Yuanetal.,2002).Often,however,delaminationonlyoccurs et al., 2010; Ballato et al., 2011; McQuarrie and van Hinsbergen, aftersignificantcrustalandlithosphericshorteningandthickening, 2013),ormorespecificallyintwostagesbetween36and20Maand whichitselfshouldproduceisostaticuplift.Suchtemporalchangesin after20Ma(Ballatoetal.,2011),andwasfollowedbycrustalshorten- upliftmechanismshavespurredinvestigationsintotherelativecontri- ingacrossEasternAnatolia(Şengöretal.,2008).DespitealateCreta- butionsofcrustalshortening,lithosphericthinning,lowercrustalflow, ceous to Eocene history involving shortening and the accretion of magmaticaddition,orotherprocessesinproducinguplift(e.g.,Dewey severalcontinentalfragments(e.g.,ŞengörandYılmaz,1981;Dixon andBurke,1973;FroidevauxandIsacks,1984;Allmendingeretal., andRobertson,1984;Tekelietal.,1984;Şengöretal.,1985;Polat, 1997;Şengöretal.,2008).Furthercomplicationsariseinregionsnear 1992; Şengör and Natal'in, 1996; Okay and Tüysüz, 1999; Tüysüz, oceanicsubductionzones,wherethesubductionofoceanicridges,sea- 1999;AndrewandRobertson,2001;SunalandTüysüz,2002;Parlak mounts,oroceanicplateaus(Livaccarietal.,1981;Cloos,1991;Espurt and Robertson, 2004; Okay et al., 2006; Pourteau et al., 2010; etal.,2008),changesinslabdip(Jordanetal.,1983;Gutscheretal., Robertson et al., 2012; Pourteau et al., 2013), Central Anatolia has 2000), magmatic underplating (Brown, 1993), and slab break-off predominantlymovedwestwardrelativetoEurasiasincethetimeof (DaviesandvonBlanckenburg,1995)mayallpotentiallydeformand Arabiancollision,accommodatedalongtheNorthandEastAnatolian elevatetheoverridingplate.Morerecently,theeffectsofuppermantle strike–slipfaults(Ketin,1948;McKenzie,1976;Şengör,1979;Dewey flowinproducingdynamictopographyhavebeenconsideredcapableof andŞengör,1979;Şengöretal.,1985).ContinuedArabia–Eurasiacon- producingkm-scaleuplift(Boschietal.,2010;FaccennaandBecker, vergencemaycontributetothiswestward“escape”ofAnatolia,butroll- 2010;Karlstrometal.,2012),whilethedevelopmentoflarge,mantle- backoftheHellenictrenchislikelythepredominantforce(LePichon, scaleconvectioncellsmayberesponsible fortheinitialshortening 1982;Jolivetetal.,2013),particularlyconsideringGPSdatashowing seeninmajororogenicplateausliketheAndesandTibet(Faccenna westward movement of Anatolia relative to Eurasia that increases etal.,2013). towardthetrench(Reilingeretal.,1997). Theworld'slargestorogenicplateausinTibetandtheAndesaretyp- ThetectoniclinksacrosstheAegean–Aantolianregionarefairly icallyviewedasresultingfromacombinationofthesedeep-seatedpro- clear,butlessobvioushavebeenthemechanismsthathavecontributed cesses,andappeartohavegrowninbothelevationandarealextent tothegrowthoftheAnatolianPlateauovertime,andifthosemecha- throughtime(e.g.,Isacks,1988;Allmendingeretal.,1997;Tapponnier nismsmayberelatedtooneanother.WhilehightopographyinEastern etal.,2001).Onceattainingcriticalelevations,theinfluenceoflocal Anatoliaislargelybelievedtoresultfromlithosphericslabdelamination topographichighsonthedistributionandamountofrainfallandconse- andbreak-off(Keskin,2003;Şengöretal.,2003;Keskin,2007;Şengör quenterosionanddepositionpatterns(e.g.,BookhagenandStrecker, etal.,2008),recentworkinCentralAnatoliapointstomultipleuplift 2008; Roe et al., 2008) can also help to create a regional plateau mechanismsthatvaryacrosstheregion.AlongthenorthernCentralAn- morphology (Sobel et al., 2003). In some cases, these feedbacks atolianPlateaumargin,Yildirimetal.(2011)suggestedthatthemost betweentectonicsandsurfaceprocessesappeartostronglyinfluence recentphaseofupliftresultsfromstrainaccumulationalongthebroad theevolutionofplateaumargins(e.g.,Hodgesetal.,2004;Strecker bendoftheNorthAnatolianFault.Alongthesouthernplateaumargin, etal.,2007,2009). upliftmechanismsthathavebeenproposedinclude:(1)slabbreak-off Iforogenicplateausgrowgraduallythroughtime,therelatively (Cosentinoetal.,2012);(2)upwellingasthenospherethroughaslab smallAnatolianPlateaumaybeanearly-stageanalogfortheworld's tear(Schildgenetal.,2012b);and(3)acombinationofslabbreak-off, largerorogenicplateaus.High-elevation(2to2.5kmaverage),high- slabtearing,andcollisionofacontinentalfragmentwiththesubduction relieftopographyinEasternAnatoliatransitionstolowerelevation zonesouthofCyprus(Schildgenetal.,2012a).Upliftintheinteriorof (1.5to2kmaverage),low-relieftopographyinCentralAnatolia,with CentralAnatoliaisdifficulttoconstrain,buthasbeensuggestedtoresult high-relief mountain ranges bounding the northern and southern fromlithosphericdelamination(Bartoletal.,2012),ormantleflow T.F.Schildgenetal./Earth-ScienceReviews128(2014)147–168 149 A B C Fig.1.(A):Regionalmapshowingtopography(ShuttleRadarTopographyMissionlevel3data,Jarvisetal.,2008)andmajortectonicboundaries.CAP:CentralAnatolianPlateau; EAP:EasternAnatolianPlateau;CP:CentralPontides;CT:CentralTaurides;BZS:Bitlis–Zagrossuture;NAF:NorthAnatolianFault;EAF:EastAnatolianFault;DSFZ:DeadSeaFault Zone;ES:EratosthenesSeamount;PT:PaphosTransform;LV:LakeVan.Whitearrowswithnumbersinsiderepresentplatemovement(mm/yr)withrespecttoastableEurasia(Reilinger etal.,2006).Dashedyellowrectanglesshow150-kmwideregionssampledfortopographicswathprofiles(minimum,mean,andmaximumelevations)acrossCentralAnatolia(B)and EasternAnatolia(C). patterns(Boschietal.,2010;FaccennaandBecker,2010).Thesevarious Anatolia:thenorthernmarginoftheCentralAnatolia,itsinterior,and processesmaybelinkedtooneanother,asslabbreak-offhasbeensug- EasternAnatolia.Fromthissurfaceperspective,wemovetodeeper gestedtohelpinducerollbackoftheHellenictrench,whichcouldin indicationsof uplift mechanisms, including structural deformation, turnpullAnatoliawestwardandhelpcreatetheNorthAnatolianFault volcanicgeochemistry,andgeophysicaldata.Specifically,weexplore (Faccennaetal.,2006)andalsoaffectmantleflowpatterns(LePichon howprocessesrelatedtolithosphericslabsubduction,mantleflow, andKreemer,2010). andplateboundaryinteractionsmayhaveconstitutedaseriesoflinked ThewealthofrecentdatafromCentralAnatoliathatinspiredthese eventsthattogethergeneratedtheCentralandEasternAnatolianpla- interpretationsspansarangeofstructural,geophysical,geochemical, teaus, while also inducing extension from the Aegean to Central geomorphological,andgeochronologicalobservations.Inthisreview, Anatolia. weattempttosynthesizethedatathathavecontributedtovarious proposedupliftmechanismsandexploretheirfeasibilityinthecontext 2. Paleotopography along the southern margin of the Central ofpublishedgeodynamicmodelsandrefinementstothechronologyof AnatolianPlateau(CentralTaurides) eventsthroughouttheregion.Weparticularlyfocusonhowrecentdata fromCentralAnatoliahelplinkextensionalprocessesintheAegean Paleoelevationstudieshaveprimarilyfocusedonareaswheremulti- withcollisionalprocessesintheeast,allwithinthecontextoforogenic kilometer-scaleuplifthasgivenrisetochangesinstablecarbonand plateauformation. oxygenisotopecompositionsrecordedinpaleosols(e.g.,Chamberlain Followingadetailedreconstructionofpaleotopographyinsouthern andPoage,2000;BlisniukandStern,2005;RowleyandCurrie,2006; CentralAnatolia,wesummarizeupliftconstraintsfromotherpartsof Garzione et al., 2008), or where changes in relief are large and 150 T.F.Schildgenetal./Earth-ScienceReviews128(2014)147–168 Fig.2.Topographicreliefmapcreatedwitha15-km-widemovingwindow.Majortectonicboundaries(asinFig.1)areshownforreference.Thinblacklinesshow2000-m elevationand−2000-mbathymetriccontours. fast enough to impact cooling-age patterns in low-temperature biostratigraphyofmarinesediments;(2)radiometricdatingoftufade- thermochronometers(e.g.,Houseetal.,1998;Clarketal.,2005a,b; positsandashes;(3)cosmogenicnuclideexposuredatingoffluvial Schildgen et al., 2007; Flowers et al., 2008; Schildgen et al., 2009; strath terraces; and (4) subsurface seismic reflection and well log Richardsonetal.,2010;Schildgenetal.,2010;Vallaetal.,2010).The data. Next, we summarize the data that we used to reconstruct Central Anatolian Plateau, with its low relief, modest elevations paleotopographyat7Ma,5Ma,and1.6Ma,asparticularlygoodcon- (typicallyb1km),andlimitedMioceneexhumation,isnearthelimit straintsexistforthosetimes.TheperiodencompassingtheMessinian ofthesensitivityofstableisotopesandthermochronologytorecord SalinityCrisis(5.96to5.33Ma)isexcluded,aswidespreadchanges upliftand/orreliefdevelopment.Fortunately,theregionoffersarange frommarinetobrackishorcontinentaldepositsanderosionofthe ofalternativesforreconstructingtopography.Forexample,sedimentary basinmarginsduringthatintervalwererelatedtorapid,km-scalesea- facieschangeswithtransitionsfrommarinetocontinentaldeposition levelfallintheMediterranean(e.g.,Clauzonetal.,1996;Krijgsman offerclear anddatablehorizonsto pinpointtherise oftopography etal.,1999;Cosentinoetal.,2013)ratherthantosurfaceuplift. abovesealevel,whilelandformssuchaspaleosurfaces,fluvialterraces, lakepaleoshorelines,andmarineterracescanserveasreferencelevels 2.1.Paleotopographicconstraintsat7Ma orstrainmarkersthatlocallyrecordsurfaceupliftanddeformation. Forlargeriversclosetotheiroutlets,incisionratesderivedfromdated Muchofthemodernreliefalongthesouthernplateaumarginpost- fluvialterracesanddeltasmaybeviableproxiesforsurfaceupliftrates datesthedepositionoflateMiocenemarinesediments,whichriseto (e.g.,Demiretal.,2004;Westawayetal.,2004;Seyreketal.,2008; over2kmelevationintheCentralTaurides.Biostratigraphyonthese Schildgenetal.,2012a;Yıldırımetal.,2013a,2013b).Thehighdensity sediments has yielded Langhian (15.97–13.65Ma, Ocakoğlu, 2002; oftheselandformsandsedimentarydepositsinCentralAnatoliaoffer Bassant et al., 2005) to Serravallian (13.65–11.61Ma, Tanar and an opportunity to reconstruct surface uplift with high spatial and Gökçen,1990;Cipollarietal.,2013a)agesintheMutBasin,although temporalresolution,providinguniqueinsightsintothegeodynamic Cosentinoetal.(2012)reportedlateTortonianagesof8.35to8.10Ma mechanismsofuplift. fromtheca.2-km-highmarlsnearthevillageofBaşyayla(Fig.3).The ReconstructionsofpaleogeographyofthesouthernmarginofCen- additional~100mofmarinelimestonesabovethe8.35to8.10Ma tralAnatolia(e.g.,Robertsonetal.,2003;Fleckeretal.,2005;Jaffey marlsimplythattheyoungestmarinesedimentsnearBaşyaylaare andRobertson,2005)andfortheTethysregionasawhole(Şengör evenyoungerthan8Ma(Cosentinoetal.,2012).Similarly,theageof andYılmaz,1981;RobertsonandDixon,1984;Dercourtetal.,1993; patchesoflateMiocenemarinesedimentsalongtheSWplateaumargin ŞengörandNatal'in,1996;Popovetal.,2004,2006)haveusedophiolite nearthevillageofSarıalan(Deynouxetal.,2005;Fleckeretal.,2005) outcrops,changesinsedimentfacies,andpaleomagneticrotationsto wasrefinedwithbio-andlithostratigraphyto6.7Mafortheuppermost reconstructtheevolutionofdepositionalenvironmentsandshoreline sedimentsat1.5kmelevation(Schildgenetal.,2012b).Becausemarine morphology.Weextendtheseeffortsbystudyingmultiplestepsinthe sedimentationcontinuedtoatleast6.7MaatSarıalan,andmorerecent- evolutionoftopographyalongthesouthernmarginofCentralAnatolia. lythan8ManearBaşyayla,upliftintheareaabovesealevelstarted Our reconstructions of paleotopography in this region utilize: (1) sometimeafterca.7Ma. T.F.Schildgenetal./Earth-ScienceReviews128(2014)147–168 151 Fig.3.MapofthesouthernmarginoftheCentralAnatolianPlateauillustratinglocationsfromwhichdataarederivedtoreconstructpaleotopographicmaps. OnlapoflateMiocenemarinesedimentsontoMesozoicbasement However,Cipollarietal.(2013b)arguedthatsimilaritieswiththeseis- rocksrevealstheexistenceofpaleotopographichighsduringthelate micstratigraphyoftheAdanaBasincouldmeanthattheconglomerates Miocene(Cosentinoetal.,2011,2012).Suchareaswerethesourcefor overlyingtheM-reflectorinsteadcorrelatewiththelateMessinian Miocene conglomeratesdeliveredtothemarginsof theKöprüand conglomeratesoftheAdanaBasin. Manavgatbasins(Fleckeretal.,1995,1998;Karabıyıkoğluetal.,2000; TheAdana,Manavgat,andAksubasinsremainedmarineintothe Deynouxetal.,2005;Monodetal.,2006;Çineretal.,2008). earlyPliocene.IntheAdanaBasin,earlyZancleanmarinemarlsoutcrop Areasfarthernorthwerepredominantlyterrestrialduringthelate nearthevillageofAvadan(Fig.3;Cipollarietal.,2013b).Inthesouthern Miocene.OnlycontinentalsedimentationoccurredsincethelateOligo- halfoftheAksuBasin,marinesedimentsareasyoungasearlytomiddle ceneintheAktoprakandUlukışlabasins(ClarkandRobertson,2002, Pliocene(Bizonetal.,1974;AkayandUysal,1985;Poissonetal.,2003; 2005;JaffeyandRobertson,2005),whichareboundedtothesouthby Sagular,2009;SagularandÇoban,2009;Poissonetal.,2011).Inthe theCentralTaurides.IntheAltınapaBasin,lacustrinesedimentsre- ManavgatBasin,shallowmarinedepositioncontinuedupto~10km vealedlateMiocenetoPliocenebiostratigraphicages(GögerandKıral, inlandfromthemoderncoastlinethroughearlyPliocenetime(Akay 1969; Görmüs, 1984; Eren, 1993; Özkan, 1998), while ashes dated andUysal,1985;GloverandRobertson,1998),andfinallyendedduring with40Ar/39ArgeochronologyyieldedmiddleMioceneandolderdates thelateZanclean(GloverandRobertson,1998). (Koçetal.,2012).Finally,Koçyiğitetal.(2000)describedearlyMiocene toQuaternaryfluviallacustrinesedimentsintheAkşehirgraben,imply- 2.3.Paleotopographicconstraintsat1.6Ma ingtheexistenceofaterrestrialplateauinterior,whileareastothe southwerepredominantlymarine. NearthevillageofHacıahmetliintheMutBasin(Fig.3),marinesed- imentsasyoungas1.6Maoutcropatupto1.2kmelevation(Yıldız 2.2.Paleotopographicconstraintsat5Ma et al.,2003; Schildgen et al.,2012a).Therapidgeneration of relief after1.6Mathatisimpliedbythehighpresent-dayelevationofthesed- WhilethemarinesedimentationwithintheTauridesimpliesthat imentsiscorroboratedbyrapid(0.52to0.66mm/yr)incisionratesof theonsetofupliftoccurredsometimeafter7Ma,coarsefluvialcon- theGöksuRiverfromca.130katotoday,basedoncosmogenicexpo- glomeratedepositioninseveralbasinsflankingtheCentralTaurides sure ages of fluvial strath terraces (Schildgen et al., 2012a). In the startinginthelatestMioceneindicatesthatupliftlikelystartedprior Adana Basin, lower Pleistocene marine sediments were identified toca.5.5Ma.NorthoftheCentralTaurides,fluvialconglomeratesof fromwell-logcuttingsafewtensofmetersabovesealevel(Cipollari theAktoprakBasinoverlielateMiocenelacustrinesediments(Jaffey etal.,2013b).IntheAntalyaBasin,GloverandRobertson(2003)esti- andRobertson,2005).SouthoftheTauridesintheAdanaBasin,the mated that freshwater tufa deposits started to be deposited in the ageofthethickfluvialconglomeratesoftheHandereFormation(previ- regionby1.5to2Ma,implyingthatmostofthepresentcoastalarea ouslyassociatedwiththePliocene,GürbüzandKelling,1993;Nazik, wasabovesealevelbyearlyPleistocenetime. 2004;DarbaşandNazik,2010)hasbeenrefinedthroughbiostratigra- phy to be associated with the latest Messinian “Lago-Mare” event 2.4.Creatingpaleotopographicmaps (5.60 to 5.33Ma, CIESM, 2008) (Cosentino et al., 2010a, 2010b; Cipollarietal.,2013b;Farandaetal.,2013).Plioceneageshadalso Schildgenetal.(2012b)showedthatbyfittingasplinesurfaceto beeninferredforcoarsedepositsoverlyingthe“M-reflector”intheoff- uplifted late Miocene neritic limestones, the cumulative post-late shoreCilicia(Aksuetal.,2005)andAntalyabasins(İşleretal.,2005). Mioceneupliftisgreatestparalleltothemodernplateaumargin,and 152 T.F.Schildgenetal./Earth-ScienceReviews128(2014)147–168 Fig.4.PaleotopographicmapsofthesouthernmarginoftheCentralAnatolianPlateau.(A):7Mapaleotopography;(B):5Mapaleotopography;(C):1.6Mapaleotopography;D:present topography. T.F.Schildgenetal./Earth-ScienceReviews128(2014)147–168 153 decreasestowardthecoastandtowardtheplateauinterior.Thespline constituteasignificantorographicbarriertoprecipitationbythattime surfacecanthenbesubtractedfromthemoderntopographytore- (Mazzinietal.,2013).AnalysesofOligocenetoearlyMiocenestableiso- construct the late Miocene (ca. 7Ma) paleotopography (Schildgen topesacrosstheplateaurevealsimilarresults,withanapparentabsence et al., 2012b). We constructed additional paleotopographic maps ofsignificantorographicbarriersatboththenorthernandsouthern (Fig.4)bysubtractingfractionsofthesplinesurfacefromthemodern Central Anatolian Plateau margins by 20 to 16Ma (Lüdecke et al., topography.Weassumedthatthepatternofupliftrevealedbythelate 2013).Finally,aseriesoflow-relief,elevatedpaleo-erosionsurfaces Miocenesedimentshasnotchangedthroughtime,sothatthroughout thatextendfromIstanbulthroughtheCentralPontideshavebeensug- our reconstruction, the plateau margin is uplifted faster compared gestedtorepresentthevestigesofapaleosurfacethathasundergone withcoastalandinteriorregions.Thisassumptionisdifficulttotest, differentialuplift(Yılmaz,2007).NearIstanbul,thelow-reliefsurface buttheoccurrenceofthehighestearlyPleistocenemarinesediments remnantslieat40to300melevation(Yılmazetal.,2010),whilewithin (Yıldızetal.,2003;Schildgenetal.,2012a)inasimilarlocationasthe theCentralPontides,theyoccuratca.1000to1500melevation(Fig.6). highestlateMiocenemarinesediments(alongtheaxisoftheCentral Withoutknowingtheageorpotentiallydiachronousnatureofthesur- Taurides) suggests that a broadly similar pattern of deformation face,itcannotbeusedtoquantifyupliftratesintheCentralPontides. persisted.Wereconstructedthemapfor5Mabyassumingthatanup- Nonetheless,thepreservationoftheearlytomiddleMiocenemarine liftrateof0.2mm/yrstartedintheMutBasinat7Ma,tobeconsistent sediments,togetherwiththelackofisotopicevidenceofarainshadow withresultsreportedbyCosentinoetal.(2012)andSchildgenetal. by 8Ma and the paleosurface remnants, implies surface uplift and (2012a,2012b).Becausethiswouldleadto0.4kmofupliftby5Ma, incisionofnomorethan1to1.5kmsincethelateMiocene. or 20% of the 2-km elevation of the marine sediments today, we Geomorphicdataprovidesomecluestorecentdeformationpatterns subtracted80%ofthesplinesurfacefromthemoderntopography.For andratesintheCentralPontides.IntheKastamonuBasin(Fig.6),in- the1.6Matimeslice,weassumedthat1.2kmofupliftoccurredafter cisedfluvialstrathterracesandpedimentswereusedtodefineanaver- 1.6Ma(Yıldızetal.,2003;Schildgenetal.,2012a).The0.8kmofuplift ageincisionrateof0.27to0.29mm/yrsinceca.340ka(Yıldırımetal., thatoccurredbetweenca.7and1.6Marepresents40%ofthetotal2-km 2013b).Locallyfasterincisionratesoccurnearactivethrusts,indicating ofuplift,therefore,wesubtracted60%ofthesplinesurfacefromthe thatupliftandincisionweredrivenbymotiononthrustfaults(Yıldırım moderntopography. etal.,2013b).Moreover,latePleistocenemarineterracesalongthe Aftercreatingtheinitialmaps,wecorrectedanyinconsistencies BlackSeacoastaroundtheSinopPeninsulaindicateupliftratesthat betweenthepaleoshorelinepositionsandpublisheddescriptionsofma- decrease from 0.2mm/yr at the southern end of the peninsula to rineversuscontinentalsedimentsthatweresummarizedintheprevi- 0.02mm/yratthenorthernend(Yıldırımetal.,2013a).Similarly,Qua- oussections.Wealsoattemptedtoremovesomeartifactsofmodern ternarypaleo-deltasoftheKızılırmakRiver(~120kmdownstream relief.Forexample,aftersubtractingfractionsofthesmoothsplinesur- fromtheoutletoftheKastamonuBasin,e.g.,Akkan,1970)werecorre- facefromthemoderntopography,wereducedelevationsoverlong latedwithrelativesea-levelhighstandstoindicateacoastalupliftrate wavelengths,buttheshort-wavelengthreliefofthemodernlandscape of0.2to0.3mm/yrduringthelast340ka(Demiretal.,2004).These remained.Thisproblemwasmostprominentwheredeeplyincised upliftandriver-incisionrateestimatesareconsistentwithmodernver- rivervalleysdraintothecoast.Inthoseareas,therivervalleyswere ticalvelocitiesoflessthan1mm/yr(0.4±0.7mm/yr)constrained belowsealevelaftersubtractingthesplinesurface,resultinginirregular withPersistentScatterersInSARandGPSvelocitiesforthesameregion shorelinesresemblingdrownedtopography.Becausetheshorelines (Peyretetal.,2013).Together,thedatasupportthehypothesisoflate weremorelikelytoberelativelysmooth(assumingthatthemodernre- PleistoceneupliftthroughouttheCentralPontidesrelativetotheBlack liefwasgeneratedafterthatregionwasuplifted),wemanuallychanged Sea.GiventhattotalupliftintheregionsincethelateMioceneisonly theshorelinesinourfinalpaleotopographicmaps.Asimilarproblemoc- ca.1to1.5km,therecentincision/upliftratesrecordedintheCentral cursinsomeinlandareas.Forexample,theErmenekBasinwasbelow Pontidescouldnothavebeenactiveformorethan4to5Myr. sealevelafterthesplinesubtraction;however,themiddletolateMio- cenemarinestratigraphysuggeststhatsedimentsalongwhatisnow 3.2.UpliftoftheinterioroftheCentralAnatolianPlateau thesouthernsideofthevalleyrepresentdeepersedimentsdeposited lateral to a platform, which is on the northern side of the valley Fewfirmconstraintsexistfortheuplifthistoryoftheinteriorofthe (Jansonetal.,2010;Cipollarietal.,2013a).Theseobservationssupport CentralAnatolianPlateau.Poissonetal.(1997,2010)describedevi- ascenariowherethemodernreliefofthevalleywasonlygeneratedfol- denceofanearlyMiocenemarinetransgressionintheSivasBasin, lowingupliftandfluvialincisionthroughthemiddletolateMiocene whichisnowatca.1300melevation,atalocationthattransitionsbe- sediments.Forthatreason,wechangedtheelevationsoftheErmenek tweenEasternandCentralAnatolia.Becausecurrentmeanelevations Basintolieabovesealevelforthe5Mamap.Despitethesecorrections, intheCentralAnatolianPlateauinteriorarecloseto1km(Fig.1B), smallerartifactspersist,whichcanbeseenintopographicprofilesex- andmuchoftheregionwasterrestrialsinceatleastearlyMiocene tractedalongtransectsthatcrossthesouthernplateaumargin(Fig.5). time (Dercourt et al., 1993; Popov et al., 2004, 2006; Akgün et al., 2007andreferenceswithin;alsoseeSection2.1),theinteriormust 3.Upliftconstraintsfromotherregions haveexperiencedb1kmofsurfaceupliftsincethelateMiocene. Riverterracesalongthenorthward-flowingKızılırmakRiverinthe 3.1. Uplift of the northern margin of the Central Anatolian Plateau centralpartoftheplateaurevealameanincisionrateof0.08mm/yr (CentralPontides) averagedoverthelast1.99Ma,or0.07mm/yraveragedoverthelast 404ka(Doğan,2011),whichis4×slowerthanincisionthroughthe TopographicgrowthofthenorthernmarginoftheCentralAnatolian northernplateaumarginsinceca.340ka(Yıldırımetal.,2013b),and Plateau,whichcomprisestheCentralPontides,ismoreambiguouscom- 8×slowerthanincisionthroughthesouthernplateaumarginsinceca. paredwiththesouthernmargin.Theyoungestmarinesedimentsre- 130ka(Schildgenetal.,2012a).Theslowerincisionintheinteriorindi- portedfromtheregionareat1040melevationintheDevrekâniBasin catesthateitherthenorthward-flowingKızılırmakRiveriscurrentlyin (Fig. 6), with an estimated early to middle Miocene age (Tunoğlu, atransientstate,withupstreamportionsoftherivernotyetadjustedto 1991a,b),implyingca.1-kmofupliftsincethattime.Stableisotope fasterupliftthroughouttheregion,orthatfasteruplifthasoccurred compositionsfromthe12to8MaTuğlulacustrinesectionoftheÇankırı alongtheplateaumarginscomparedtotheplateauinteriorsincethe Basin(Mazzinietal.,2013),southoftheNorthAnatolianFault,further- latePleistocene(Yıldırımetal.,2013b). more show less depletion compared with modern precipitation Overall,itremainsunclearhowmuchsurfaceupliftoccurredinthe (Schemmeletal.,2013),implyingthattheCentralPontidesdidnot CentralAnatolianPlateauinteriorsincethelateMiocene,butitappears 154 T.F.Schildgenetal./Earth-ScienceReviews128(2014)147–168 2 Swath 1 Swath 2 Fig.5.SwathprofilesacrossfoursectionsofthesouthernmarginoftheCentralAnatolianPlateau.Eachprofilewasextractedfromthemoderntopographyandthethreepaleotopographic maps,toillustratethetemporalevolutionoftopographyineachregion.Notethatthelong-wavelengthtopographychangesovertime,however,littlechangeoccurstoshort-wavelength relief,duetothemethodsusedinreconstructingthepaleotopography.InSwath1,linesmarkingtheelevationprofilesat5Maand1.6Maaredashed,toindicateuncertaintyrelatedtothe lackofinformationonchangesinupliftratesthroughtimefortheSWplateaumargin. tohaveexperiencedlessupliftcomparedwithboththeCentralPontides generallycalc-alkalineincompositionandclusteredinthenorth inthenorthandtheCentralTauridesinthesouth. (Pearceetal.,1990;Keskinetal.,1998,Keskin,2007).By6to7Ma, predominantly alkaline volcanism had spread southwards andeastwards(Pearceetal.,1990;Keskinetal.,1998;Sumitaand 3.3.UpliftoftheEasternAnatolianPlateau Schmincke,2013).Thisvolcanismandthechangesinvolcanicgeo- chemistryhavebeenusedtoinferthatfundamentalchangesinthe The2-to3-kmaverageelevationsoftheEasternAnatolianPlateau mantlelithosphereand/oruppermantlewerecoevalwiththestart risesignificantlyhigherthanthoseoftheCentralAnatolianPlateau.In of uplift in Eastern Anatolia (Keskin, 2003; Şengör et al., 2003; EasternAnatolia,theendofmarinesedimentationnearLakeVanduring Keskin,2007;Şengöretal.,2008). theSerravallian(ca.12Ma)(Fig.1,Gelati,1975;Popovetal.,2004)and atca.11MaintheKahramanmaraşBasin(southoftheBitlis-Zagrossu- turezone)(Hüsingetal.,2009),coupledwithlarge-scaleunderthrust- 4.Crustalscaledeformation ingofthe11Masediments(Hüsingetal.,2009)atteststothefinal closureoftheNeotethysOceanandlimitsthestartofmoreregionalsur- Apartfromsurface-upliftstudies,structuralandgeophysicalstudies faceuplift(e.g.,ŞengörandKidd,1979;Şengöretal.,1985,2008;Hüsing provideinsightsintotheprocessesthatcontributetotopographicevo- etal.,2009).Arecentapatitefission-trackstudyindicatesaccelerated lution,includingcluesaboutcrustalstresspatterns,plate-boundaryin- exhumationintheBitlis–Zagrosthrustzoneatthesuturebetweenthe teractions,thegeometryoflithosphericslabs,andthelikelihoodof ArabianandEurasianplatesatca.12Ma(Okayetal.,2010),which delaminationofthemantlelithosphere.Inthefollowingsections,we mayalsoindicatethestartofanupliftphase. summarizethestructuralevolutionofdifferentsectorsoftheCentral Consistentwiththeestimatedonsetofupliftisthetimingandnature and Eastern Anatolian plateaus before moving on to geophysical ofvolcanismintheregion(Fig.7).Earliesteruptionsatca.11Mawere constrainsinSection5. T.F.Schildgenetal./Earth-ScienceReviews128(2014)147–168 155 A B C Fig.6.Reliefmap(A)andtopographicmap(B)oftheCentralPontidesalongthenorthernmarginoftheCentralAnatolianPlateau.Blackdashedlinesoutlinehigh-elevationregionsoflow reliefinbothmaps.Theselow-relief,elevatedsurfacesareinterpretedtoberemnantsofadifferentially-upliftederosionalpaleosurfacethatspansthenorthernmarginofTurkey.White lineoutlinestheperchedDevrekaniBasin.SP:SinopPeninsula;KB:KastamonuBasin;TB:TosyaBasin;DB:DevrekaniBasin;NAF:NorthAnatolianFault.(C):Conceptualmodelforthe CentralPontidesasabivergentorogenicwedgerelatedtoapositiveflowerstructuredevelopedoverashallowdetachmentsurfacelinkedtotheNorthAnatolianFault(modifiedafter Yildirimetal.,2011). 4.1.CrustalshorteningatthenorthernmarginoftheCentralAnatolian shortenedandthickenedalonganorth-vergentdetachmentassociated Plateau withaforelandfold-and-thrust-beltfromthePaleocenetotheEocene (e.g., Şengör et al., 1985; Şengör, 1995; Okay and Tüysüz, 1999; Following closure of the northern branch of the Neotethys and Tüysüz,1999;SunalandTüysüz,2002;Okayetal.,2006).Northofthe collisionofthePontideislandarcwiththeSakaryacontinenttothe Pontides, the south-central and southeastern Black Sea margin is southmainlyduringlateCretaceoustime,theCentralPontideswere currentlyundergoingshortening(BarkaandReilinger,1997;Cloetingh 156 T.F.Schildgenetal./Earth-ScienceReviews128(2014)147–168 Fig.7.SimplifiedgeologicalmapofTurkeyderivedfrom1:500,000scalemappingfromtheMadenTetkikveAramaGenelMüdürlüğü(MTA),Ankara,Turkey.Allbrownregionsindicate pre-Miocenerocks.Majortectonicboundaries(asinFig.1)areshownforreference. etal.,2003).AtthesouthernborderoftheCentralPontides,which 4.2.StructuralevolutionofthesouthernmarginoftheCentralAnatolian marksthenorthernboundaryoftheAnatolianmicroplate,theNorth Plateau AnatolianFault(NAF)formsawidenorthward-convexbend(Fig.6) thatisundergoingdextraldisplacementof24mm/yr(Reilingeretal., TheCentralTauridesalongthesouthernplateaumarginconsist 2006).Variationsinthelateralandfault-normalcomponentofmotion ofmultipleoceanicandcontinentalunitsshortenedinlateCretaceous– occuralongthebroadrestrainingbend,withfault-normalshortening EocenetimeduringtheclosureoftheNeotethysandsubsequentcolli- (upto8mm/yr)occurringbetweenEreğliandtheSinopPeninsula sionoftheTauruscarbonateplatformswiththecrystallinecomplexof (31.5to35°Elatitude)(Yildirimetal.,2011).TheCentralPontidesof Central Anatolia (Şengör and Yılmaz, 1981; Dixon and Robertson, thatregionarecharacterizedbythrustfaultsthatdeformQuaternary 1984;Pourteauetal.,2010,2013).TheBozkırandAladağnappeswere sediments(Andrieuxetal.,1995;Yildirimetal.,2011)aswellasactive emplacedfromthenorthinlateCretaceoustomiddle–lateEocenetime seismicity,suchastheMs6.5Bartınearthquakeof1968,whichshowed (Özgül,1976,1997;Monod,1977;AkayandUysal,1988;Bozkayaand a thrusting focal mechanism (Ketin and Abdüsselamoğlu, 1969; Yalçin,2000;AndrewandRobertson,2001).Topographicgrowthfrom McKenzie,1972).SouthoftheNAF,thereactivationofstructuresafter middleEocenetolateOligocenetimeledtowidespreadfluvialandlacus- lateMiocenetimeintheÇankırıBasinappearstorelatetolocalblockro- trinesedimentation(ClarkandRobertson,2002,2005;Erişetal.,2005; tationsalongfaultswithstrike–slipcomponents(Luciforaetal.,2013). Şafaketal.,2005),withlocalizedextensionandbasinformationsug- Seismicreflectionstudieshaverevealeddeepthrustfaultsalongthe gestedtoresultfromsouthwardretreatoftheAfricanslab(Kempler southern margin of the Black Sea and within the Central Pontides. andBen-Avraham,1987;Robertson,1998,2000;JolivetandFaccenna, AcrossthesouthernmarginoftheBlackSea,thrustfaultsdeformQua- 2000).Subsidencethatresultedinachangefromterrestrialtomarine ternarysediments,typicallywithprogressivesouthwardmigrationof sedimentationinsouthernTurkeyandformationoftheCiliciaBasin deformation(Finettietal.,1988).Similarsouthward-migratingdefor- hasalsobeenexplainedbyslabretreat(Robertson,1998).Afinalstage mationpatternswereobservedwithintheCentralPontides(Aydın ofshorteningdeformedOligocenelakesediments,butsincelateMiocene etal.,1995;Şengör,1995;Damcıetal.,2004).Yildirimetal.(2011)in- time,small-scalenormalandstrike–slipfaultinghavepredominated tegratedtheseismicreflectionlinesfromtheBlackSeaandfromwithin withintheCentralTaurides (Gloverand Robertson,1998; Ilgarand theCentralPontideswithsurfaceevidenceofactivethrustingtosuggest Nemec,2005;Schildgenetal.,2012b).Moresubstantialdeformation, thattheCentralPontidesconstituteanorogen-scale,bivergent,wedge- andmostofthepost-lateMiocenesurfaceuplift,appearstohaveaccu- shapedtranspressivestructure,withashallowdetachmenthorizonthat mulatedthroughlong-wavelengthupwarpingoftheregion(Cosentino mergeswiththeNAFatdepth(Fig.6C).Insupportofthisinferredim- etal.,2012). portanceanddeepextentoftheNAF,recentwaveforminversionsof OffshoreseismicreflectionlinesinthecentralportionsoftheAntal- teleseismicandregionaldatarevealalowvelocityzonealongtheeast- yaandCiliciabasinsrevealminorthruststhatmayberelatedtosalt ernandcentralsectionsoftheNAFthatextendthroughthecrustand tectonics(Evansetal.,1978;Bridgeetal.,2005).Alongthenorthern intotheuppermantle,likelyreflectingastructurallyweakzonethat marginoftheCiliciaBasinbetweenCyprusandsouthernTurkey(line correspondstoTethyansutures(Fichtneretal.,2013). AofAksuetal.,2005),low-angle,south-directedthrustsaffectUnit2,
Description: