ebook img

Linearity, symmetry, and prediction in the hydrogen atom PDF

404 Pages·2005·1.616 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Linearity, symmetry, and prediction in the hydrogen atom

Undergraduate Texts in Mathematics Editors S. Axler K.A. Ribet UndergraduateTextsinMathematics Abbott:UnderstandingAnalysis. Chambert-Loir:AFieldGuidetoAlgebra. Anglin:Mathematics:AConciseHistory Childs:AConcreteIntroductionto andPhilosophy. HigherAlgebra.Secondedition. ReadingsinMathematics. Chung/AitSahlia:ElementaryProbability Anglin/Lambek:TheHeritageof Theory:WithStochasticProcessesand Thales. anIntroductiontoMathematical ReadingsinMathematics. Finance.Fourthedition. Apostol:IntroductiontoAnalytic Cox/Little/O’Shea:Ideals,Varieties, NumberTheory.Secondedition. andAlgorithms.Secondedition. Armstrong:BasicTopology. Croom:BasicConceptsofAlgebraic Armstrong:GroupsandSymmetry. Topology. Axler:LinearAlgebraDoneRight. Curtis:LinearAlgebra:AnIntroductory Secondedition. Approach.Fourthedition. Beardon:Limits:ANewApproachto Daepp/Gorkin:Reading,Writing,and RealAnalysis. Proving:ACloserLookat Bak/Newman:ComplexAnalysis. Mathematics. Secondedition. Devlin:TheJoyofSets:Fundamentals Banchoff/Wermer:LinearAlgebra ofContemporarySetTheory.Second ThroughGeometry.Secondedition. edition. Berberian:AFirstCourseinReal Dixmier:GeneralTopology. Analysis. Driver:WhyMath? Bix:ConicsandCubics:A Ebbinghaus/Flum/Thomas: ConcreteIntroductiontoAlgebraic MathematicalLogic.Secondedition. Curves. Edgar:Measure,Topology,andFractal Bre´maud:AnIntroductionto Geometry. ProbabilisticModeling. Elaydi:AnIntroductiontoDifference Bressoud:FactorizationandPrimality Equations.Thirdedition. Testing. Erdo˜s/Sura´nyi:TopicsintheTheoryof Bressoud:SecondYearCalculus. Numbers. ReadingsinMathematics. Estep:PracticalAnalysisinOneVariable. Brickman:MathematicalIntroduction Exner:AnAccompanimenttoHigher toLinearProgrammingandGame Mathematics. Theory. Exner:InsideCalculus. Browder:MathematicalAnalysis: Fine/Rosenberger:TheFundamental AnIntroduction. TheoryofAlgebra. Buchmann:Introductionto Fischer:IntermediateRealAnalysis. Cryptography. Flanigan/Kazdan:CalculusTwo:Linear Buskes/vanRooij:TopologicalSpaces: andNonlinearFunctions.Second FromDistancetoNeighborhood. edition. Callahan:TheGeometryofSpacetime: Fleming:FunctionsofSeveralVariables. AnIntroductiontoSpecialandGeneral Secondedition. Relavitity. Foulds:CombinatorialOptimizationfor Carter/vanBrunt:TheLebesgue– Undergraduates. StieltjesIntegral:APractical Foulds:OptimizationTechniques:An Introduction. Introduction. Cederberg:ACourseinModern Franklin:MethodsofMathematical Geometries.Secondedition. Economics. (continuedafterindex) Stephanie Frank Singer Linearity, Symmetry, and Prediction in the Hydrogen Atom StephanieFrankSinger Philadelphia,PA19103 U.S.A. [email protected] EditorialBoard S.Axler K.A.Ribet CollegeofScienceandEngineering DepartmentofMathematics SanFranciscoStateUniversity UniversityofCaliforniaatBerkeley SanFrancisco,CA94132 Berkeley,CA94720-3840 U.S.A. U.S.A. MathematicsSubjectClassification(2000):Primary–81-01,81R05,20-01,20C35, 22-01,22E70,22C05,81Q99;Secondary–15A90,20G05,20G45 LibraryofCongressCataloging-in-PublicationData Singer,StephanieFrank,1964– Linearity,symmetry,andpredictioninthehydrogenatom/StephanieFrank Singer. p.cm.—(Undergraduatetextsinmathematics) Includesbibliographicalreferencesandindex. ISBN0-387-24637-1(alk.paper) 1.Grouptheory.2.Hydrogen.3.Atoms.4.Linearalgebraicgroups.5.Symmetry (Physics)6.Representationsofgroups.7.Quantumtheory.I.Title.II.Series. QC20.7.G76S56 2005 530.15′22—dc22 2005042679 ISBN-100-387-24637-1 e-ISBN0-387-26369-1 Printedonacid-freepaper. ISBN-13978-0387-24637-6 ©2005StephanieFrankSinger All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc.,233SpringStreet,NewYork,NY10013,USA),exceptforbriefexcerptsinconnec- tionwithreviewsorscholarlyanalysis.Useinconnectionwithanyformofinforma- tionstorageandretrieval,electronicadaptation,computersoftware,orbysimilaror dissimilarmethodologynowknownorhereafterdevelopedisforbidden. The use in this publication of trade names, trademarks, service marks, and similar terms,eveniftheyarenotidentifiedassuch,isnottobetakenasanexpressionof opinionastowhetherornottheyaresubjecttoproprietaryrights. PrintedintheUnitedStatesofAmerica. (TXQ/EB) 9 8 7 6 5 4 3 2 1 SPIN10940815 springeronline.com Tomymother,MaxineFrankSinger, whoalwaysencouragedmetofollowmyowninstincts: IthinkImaybereadytolearnsomechemistrynow. Contents Preface xi 1 SettingtheStage 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 FundamentalAssumptionsofQuantumMechanics . . . . . 2 1.3 TheHydrogenAtom . . . . . . . . . . . . . . . . . . . . . 8 1.4 ThePeriodicTable . . . . . . . . . . . . . . . . . . . . . . 13 1.5 PreliminaryMathematics . . . . . . . . . . . . . . . . . . . 17 1.6 SphericalHarmonics . . . . . . . . . . . . . . . . . . . . . 27 1.7 EquivalenceClasses . . . . . . . . . . . . . . . . . . . . . . 33 1.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2 LinearAlgebraovertheComplexNumbers 41 2.1 ComplexVectorSpaces . . . . . . . . . . . . . . . . . . . . 42 2.2 Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.3 LinearTransformations . . . . . . . . . . . . . . . . . . . . 48 2.4 KernelsandImagesofLinearTransformations. . . . . . . . 51 2.5 LinearOperators . . . . . . . . . . . . . . . . . . . . . . . 55 2.6 CartesianSumsandTensorProducts . . . . . . . . . . . . . 62 2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 viii Contents 3 ComplexScalarProductSpaces(a.k.a.HilbertSpaces) 77 3.1 LebesgueEquivalenceand L2(R3) . . . . . . . . . . . . . . 78 3.2 ComplexScalarProducts . . . . . . . . . . . . . . . . . . . 81 3.3 Euclidean-styleGeometryinComplexScalar ProductSpaces . . . . . . . . . . . . . . . . . . . . . . . . 85 3.4 NormsandApproximations . . . . . . . . . . . . . . . . . . 94 3.5 UsefulSpanningSubspaces . . . . . . . . . . . . . . . . . . 99 3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4 LieGroupsandLieGroupRepresentations 111 4.1 GroupsandLieGroups . . . . . . . . . . . . . . . . . . . . 112 4.2 TheKeyPlayers:SO(3),SU(2)andSO(4) . . . . . . . . . . 117 4.3 TheSpectralTheoremforSU(2)andthe DoubleCoverofSO(3) . . . . . . . . . . . . . . . . . . . . 120 4.4 Representations:DefinitionandExamples . . . . . . . . . . 127 4.5 RepresentationsinQuantumMechanics . . . . . . . . . . . 133 4.6 HomogeneousPolynomialsinTwoVariables . . . . . . . . 137 4.7 CharactersofRepresentations . . . . . . . . . . . . . . . . 141 4.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5 NewRepresentationsfromOld 153 5.1 Subrepresentations . . . . . . . . . . . . . . . . . . . . . . 153 5.2 CartesianSumsofRepresentations . . . . . . . . . . . . . . 158 5.3 TensorProductsofRepresentations. . . . . . . . . . . . . . 160 5.4 DualRepresentations . . . . . . . . . . . . . . . . . . . . . 164 5.5 TheRepresentationHom . . . . . . . . . . . . . . . . . . . 168 5.6 PullbackandPushforwardRepresentations. . . . . . . . . . 172 5.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 6 IrreducibleRepresentationsandInvariantIntegration 179 6.1 DefinitionsandSchur’sLemma. . . . . . . . . . . . . . . . 180 6.2 ElementaryStatesofQuantumMechanicalSystems . . . . . 185 6.3 InvariantIntegrationandCharacters ofIrreducibleRepresentations . . . . . . . . . . . . . . . . 187 6.4 IsotypicDecompositions(Optional) . . . . . . . . . . . . . 193 6.5 ClassificationoftheIrreducibleRepresentationsof SU(2) . 199 6.6 ClassificationoftheIrreducibleRepresentationsofSO(3) . . 202 6.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 Contents ix 7 RepresentationsandtheHydrogenAtom 209 7.1 HomogeneousHarmonicPolynomialsofThreeVariables . . 209 7.2 SphericalHarmonics . . . . . . . . . . . . . . . . . . . . . 213 7.3 TheHydrogenAtom . . . . . . . . . . . . . . . . . . . . . 219 7.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 8 TheAlgebraso(4)SymmetryoftheHydrogenAtom 229 8.1 LieAlgebras. . . . . . . . . . . . . . . . . . . . . . . . . . 230 8.2 RepresentationsofLieAlgebras . . . . . . . . . . . . . . . 241 8.3 RaisingOperators,LoweringOperatorsand IrreducibleRepresentationsofsu(2) . . . . . . . . . . . . . 246 8.4 TheCasimirOperatorand IrreducibleRepresentationsofso(4) . . . . . . . . . . . . . 255 8.5 BoundStatesoftheHydrogenAtom . . . . . . . . . . . . . 262 8.6 TheHydrogenRepresentationsofso(4) . . . . . . . . . . . 267 8.7 TheHeinousDetails . . . . . . . . . . . . . . . . . . . . . 271 8.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 9 TheGroupSO(4)SymmetryoftheHydrogenAtom 283 9.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 284 9.2 Fock’sOriginalArticle . . . . . . . . . . . . . . . . . . . . 286 9.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 10 ProjectiveRepresentationsandSpin 299 10.1 ComplexProjectiveSpace . . . . . . . . . . . . . . . . . . 299 10.2 TheQubit . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 10.3 ProjectiveHilbertSpaces . . . . . . . . . . . . . . . . . . . 311 10.4 ProjectiveUnitaryIrreducibleRepresentationsandSpin . . . 318 10.5 PhysicalSymmetries . . . . . . . . . . . . . . . . . . . . . 323 10.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 11 IndependentEventsandTensorProducts 339 11.1 IndependentMeasurements . . . . . . . . . . . . . . . . . . 340 11.2 PartialMeasurement . . . . . . . . . . . . . . . . . . . . . 342 11.3 EntanglementandQuantumComputing . . . . . . . . . . . 346 11.4 TheStateSpaceofaMobileSpin-1/2Particle . . . . . . . . 354 11.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 356 11.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 x Contents A SphericalHarmonics 359 B ProofoftheCorrespondencebetweenIrreducible LinearRepresentationsofSU(2)and IrreducibleProjectiveRepresentationsofSO(3) 369 C SuggestedPaperTopics 377 Bibliography 379 GlossaryofSymbolsandNotation 385 Index 391 Preface Itjustmeanssomuchmoretosomuchmorepeoplewhenyou’rerappin’and youknowwhatfor. —Eminem,“Business”[Mat] This is a textbook for a senior-level undergraduate course for math, physics and chemistry majors. This one course can play two different but comple- mentary roles: it can serve as a capstone course for students finishing their education, and it can serve as motivating story for future study of mathe- matics. Sometextbooksarelikeavigorousregularphysicaltrainingprogram,pre- paringpeopleforawiderangeofchallengesbyhoningtheirbasicskillsthor- oughly. Some are like a series of day hikes. This book is more like an ex- tendedtrektoaparticularlybeautifulgoal.We’lltaketheeasiestroutetothe top,andwe’llstoptoappreciatelocalfloraaswellasdistantpeaksworthyof thevigoroustrainingonewouldneedtoscalethem. Advice to the Student This book was written with many different readers in mind. Some will be mathematicsstudentsinterestedtoseeabeautifulandpowerfulapplicationof a “pure” mathematical subject. Some will be students of physics and chem- istry curious about the mathematics behind some tools they use, such as

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.