Undergraduate Texts in Mathematics Editors S. Axler K.A. Ribet UndergraduateTextsinMathematics Abbott:UnderstandingAnalysis. Chambert-Loir:AFieldGuidetoAlgebra. Anglin:Mathematics:AConciseHistory Childs:AConcreteIntroductionto andPhilosophy. HigherAlgebra.Secondedition. ReadingsinMathematics. Chung/AitSahlia:ElementaryProbability Anglin/Lambek:TheHeritageof Theory:WithStochasticProcessesand Thales. anIntroductiontoMathematical ReadingsinMathematics. Finance.Fourthedition. Apostol:IntroductiontoAnalytic Cox/Little/O’Shea:Ideals,Varieties, NumberTheory.Secondedition. andAlgorithms.Secondedition. Armstrong:BasicTopology. Croom:BasicConceptsofAlgebraic Armstrong:GroupsandSymmetry. Topology. Axler:LinearAlgebraDoneRight. Curtis:LinearAlgebra:AnIntroductory Secondedition. Approach.Fourthedition. Beardon:Limits:ANewApproachto Daepp/Gorkin:Reading,Writing,and RealAnalysis. Proving:ACloserLookat Bak/Newman:ComplexAnalysis. Mathematics. Secondedition. Devlin:TheJoyofSets:Fundamentals Banchoff/Wermer:LinearAlgebra ofContemporarySetTheory.Second ThroughGeometry.Secondedition. edition. Berberian:AFirstCourseinReal Dixmier:GeneralTopology. Analysis. Driver:WhyMath? Bix:ConicsandCubics:A Ebbinghaus/Flum/Thomas: ConcreteIntroductiontoAlgebraic MathematicalLogic.Secondedition. Curves. Edgar:Measure,Topology,andFractal Bre´maud:AnIntroductionto Geometry. ProbabilisticModeling. Elaydi:AnIntroductiontoDifference Bressoud:FactorizationandPrimality Equations.Thirdedition. Testing. Erdo˜s/Sura´nyi:TopicsintheTheoryof Bressoud:SecondYearCalculus. Numbers. ReadingsinMathematics. Estep:PracticalAnalysisinOneVariable. Brickman:MathematicalIntroduction Exner:AnAccompanimenttoHigher toLinearProgrammingandGame Mathematics. Theory. Exner:InsideCalculus. Browder:MathematicalAnalysis: Fine/Rosenberger:TheFundamental AnIntroduction. TheoryofAlgebra. Buchmann:Introductionto Fischer:IntermediateRealAnalysis. Cryptography. Flanigan/Kazdan:CalculusTwo:Linear Buskes/vanRooij:TopologicalSpaces: andNonlinearFunctions.Second FromDistancetoNeighborhood. edition. Callahan:TheGeometryofSpacetime: Fleming:FunctionsofSeveralVariables. AnIntroductiontoSpecialandGeneral Secondedition. Relavitity. Foulds:CombinatorialOptimizationfor Carter/vanBrunt:TheLebesgue– Undergraduates. StieltjesIntegral:APractical Foulds:OptimizationTechniques:An Introduction. Introduction. Cederberg:ACourseinModern Franklin:MethodsofMathematical Geometries.Secondedition. Economics. (continuedafterindex) Stephanie Frank Singer Linearity, Symmetry, and Prediction in the Hydrogen Atom StephanieFrankSinger Philadelphia,PA19103 U.S.A. [email protected] EditorialBoard S.Axler K.A.Ribet CollegeofScienceandEngineering DepartmentofMathematics SanFranciscoStateUniversity UniversityofCaliforniaatBerkeley SanFrancisco,CA94132 Berkeley,CA94720-3840 U.S.A. U.S.A. MathematicsSubjectClassification(2000):Primary–81-01,81R05,20-01,20C35, 22-01,22E70,22C05,81Q99;Secondary–15A90,20G05,20G45 LibraryofCongressCataloging-in-PublicationData Singer,StephanieFrank,1964– Linearity,symmetry,andpredictioninthehydrogenatom/StephanieFrank Singer. p.cm.—(Undergraduatetextsinmathematics) Includesbibliographicalreferencesandindex. ISBN0-387-24637-1(alk.paper) 1.Grouptheory.2.Hydrogen.3.Atoms.4.Linearalgebraicgroups.5.Symmetry (Physics)6.Representationsofgroups.7.Quantumtheory.I.Title.II.Series. QC20.7.G76S56 2005 530.15′22—dc22 2005042679 ISBN-100-387-24637-1 e-ISBN0-387-26369-1 Printedonacid-freepaper. ISBN-13978-0387-24637-6 ©2005StephanieFrankSinger All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc.,233SpringStreet,NewYork,NY10013,USA),exceptforbriefexcerptsinconnec- tionwithreviewsorscholarlyanalysis.Useinconnectionwithanyformofinforma- tionstorageandretrieval,electronicadaptation,computersoftware,orbysimilaror dissimilarmethodologynowknownorhereafterdevelopedisforbidden. The use in this publication of trade names, trademarks, service marks, and similar terms,eveniftheyarenotidentifiedassuch,isnottobetakenasanexpressionof opinionastowhetherornottheyaresubjecttoproprietaryrights. PrintedintheUnitedStatesofAmerica. (TXQ/EB) 9 8 7 6 5 4 3 2 1 SPIN10940815 springeronline.com Tomymother,MaxineFrankSinger, whoalwaysencouragedmetofollowmyowninstincts: IthinkImaybereadytolearnsomechemistrynow. Contents Preface xi 1 SettingtheStage 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 FundamentalAssumptionsofQuantumMechanics . . . . . 2 1.3 TheHydrogenAtom . . . . . . . . . . . . . . . . . . . . . 8 1.4 ThePeriodicTable . . . . . . . . . . . . . . . . . . . . . . 13 1.5 PreliminaryMathematics . . . . . . . . . . . . . . . . . . . 17 1.6 SphericalHarmonics . . . . . . . . . . . . . . . . . . . . . 27 1.7 EquivalenceClasses . . . . . . . . . . . . . . . . . . . . . . 33 1.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2 LinearAlgebraovertheComplexNumbers 41 2.1 ComplexVectorSpaces . . . . . . . . . . . . . . . . . . . . 42 2.2 Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.3 LinearTransformations . . . . . . . . . . . . . . . . . . . . 48 2.4 KernelsandImagesofLinearTransformations. . . . . . . . 51 2.5 LinearOperators . . . . . . . . . . . . . . . . . . . . . . . 55 2.6 CartesianSumsandTensorProducts . . . . . . . . . . . . . 62 2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 viii Contents 3 ComplexScalarProductSpaces(a.k.a.HilbertSpaces) 77 3.1 LebesgueEquivalenceand L2(R3) . . . . . . . . . . . . . . 78 3.2 ComplexScalarProducts . . . . . . . . . . . . . . . . . . . 81 3.3 Euclidean-styleGeometryinComplexScalar ProductSpaces . . . . . . . . . . . . . . . . . . . . . . . . 85 3.4 NormsandApproximations . . . . . . . . . . . . . . . . . . 94 3.5 UsefulSpanningSubspaces . . . . . . . . . . . . . . . . . . 99 3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4 LieGroupsandLieGroupRepresentations 111 4.1 GroupsandLieGroups . . . . . . . . . . . . . . . . . . . . 112 4.2 TheKeyPlayers:SO(3),SU(2)andSO(4) . . . . . . . . . . 117 4.3 TheSpectralTheoremforSU(2)andthe DoubleCoverofSO(3) . . . . . . . . . . . . . . . . . . . . 120 4.4 Representations:DefinitionandExamples . . . . . . . . . . 127 4.5 RepresentationsinQuantumMechanics . . . . . . . . . . . 133 4.6 HomogeneousPolynomialsinTwoVariables . . . . . . . . 137 4.7 CharactersofRepresentations . . . . . . . . . . . . . . . . 141 4.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5 NewRepresentationsfromOld 153 5.1 Subrepresentations . . . . . . . . . . . . . . . . . . . . . . 153 5.2 CartesianSumsofRepresentations . . . . . . . . . . . . . . 158 5.3 TensorProductsofRepresentations. . . . . . . . . . . . . . 160 5.4 DualRepresentations . . . . . . . . . . . . . . . . . . . . . 164 5.5 TheRepresentationHom . . . . . . . . . . . . . . . . . . . 168 5.6 PullbackandPushforwardRepresentations. . . . . . . . . . 172 5.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 6 IrreducibleRepresentationsandInvariantIntegration 179 6.1 DefinitionsandSchur’sLemma. . . . . . . . . . . . . . . . 180 6.2 ElementaryStatesofQuantumMechanicalSystems . . . . . 185 6.3 InvariantIntegrationandCharacters ofIrreducibleRepresentations . . . . . . . . . . . . . . . . 187 6.4 IsotypicDecompositions(Optional) . . . . . . . . . . . . . 193 6.5 ClassificationoftheIrreducibleRepresentationsof SU(2) . 199 6.6 ClassificationoftheIrreducibleRepresentationsofSO(3) . . 202 6.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 Contents ix 7 RepresentationsandtheHydrogenAtom 209 7.1 HomogeneousHarmonicPolynomialsofThreeVariables . . 209 7.2 SphericalHarmonics . . . . . . . . . . . . . . . . . . . . . 213 7.3 TheHydrogenAtom . . . . . . . . . . . . . . . . . . . . . 219 7.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 8 TheAlgebraso(4)SymmetryoftheHydrogenAtom 229 8.1 LieAlgebras. . . . . . . . . . . . . . . . . . . . . . . . . . 230 8.2 RepresentationsofLieAlgebras . . . . . . . . . . . . . . . 241 8.3 RaisingOperators,LoweringOperatorsand IrreducibleRepresentationsofsu(2) . . . . . . . . . . . . . 246 8.4 TheCasimirOperatorand IrreducibleRepresentationsofso(4) . . . . . . . . . . . . . 255 8.5 BoundStatesoftheHydrogenAtom . . . . . . . . . . . . . 262 8.6 TheHydrogenRepresentationsofso(4) . . . . . . . . . . . 267 8.7 TheHeinousDetails . . . . . . . . . . . . . . . . . . . . . 271 8.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 9 TheGroupSO(4)SymmetryoftheHydrogenAtom 283 9.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 284 9.2 Fock’sOriginalArticle . . . . . . . . . . . . . . . . . . . . 286 9.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 10 ProjectiveRepresentationsandSpin 299 10.1 ComplexProjectiveSpace . . . . . . . . . . . . . . . . . . 299 10.2 TheQubit . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 10.3 ProjectiveHilbertSpaces . . . . . . . . . . . . . . . . . . . 311 10.4 ProjectiveUnitaryIrreducibleRepresentationsandSpin . . . 318 10.5 PhysicalSymmetries . . . . . . . . . . . . . . . . . . . . . 323 10.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 11 IndependentEventsandTensorProducts 339 11.1 IndependentMeasurements . . . . . . . . . . . . . . . . . . 340 11.2 PartialMeasurement . . . . . . . . . . . . . . . . . . . . . 342 11.3 EntanglementandQuantumComputing . . . . . . . . . . . 346 11.4 TheStateSpaceofaMobileSpin-1/2Particle . . . . . . . . 354 11.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 356 11.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 x Contents A SphericalHarmonics 359 B ProofoftheCorrespondencebetweenIrreducible LinearRepresentationsofSU(2)and IrreducibleProjectiveRepresentationsofSO(3) 369 C SuggestedPaperTopics 377 Bibliography 379 GlossaryofSymbolsandNotation 385 Index 391 Preface Itjustmeanssomuchmoretosomuchmorepeoplewhenyou’rerappin’and youknowwhatfor. —Eminem,“Business”[Mat] This is a textbook for a senior-level undergraduate course for math, physics and chemistry majors. This one course can play two different but comple- mentary roles: it can serve as a capstone course for students finishing their education, and it can serve as motivating story for future study of mathe- matics. Sometextbooksarelikeavigorousregularphysicaltrainingprogram,pre- paringpeopleforawiderangeofchallengesbyhoningtheirbasicskillsthor- oughly. Some are like a series of day hikes. This book is more like an ex- tendedtrektoaparticularlybeautifulgoal.We’lltaketheeasiestroutetothe top,andwe’llstoptoappreciatelocalfloraaswellasdistantpeaksworthyof thevigoroustrainingonewouldneedtoscalethem. Advice to the Student This book was written with many different readers in mind. Some will be mathematicsstudentsinterestedtoseeabeautifulandpowerfulapplicationof a “pure” mathematical subject. Some will be students of physics and chem- istry curious about the mathematics behind some tools they use, such as