ebook img

Linear, time-varying approximations to nonlinear dynamical systems: with applications in control and optimization PDF

302 Pages·2010·1.44 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Linear, time-varying approximations to nonlinear dynamical systems: with applications in control and optimization

Lecture Notes in Control and Information Sciences 400 Editors:M.Thoma,F.Allgöwer,M.Morari María Tomás-Rodríguez and Stephen P. Banks Linear, Time-varying Approximations to Nonlinear Dynamical Systems with Applications in Control and Optimization ABC SeriesAdvisoryBoard P.Fleming,P.Kokotovic, A.B.Kurzhanski,H.Kwakernaak, A.Rantzer,J.N.Tsitsiklis Authors Dr.MaríaTomás-Rodríguez Prof.StephenP.Banks CityUniversityLondon UniversityofSheffield SchoolofEngineering& Dept.AutomaticControl& MathematicalSciences SystemsEngineering NorthamptonSquare MappinStreet London Sheffield UnitedKingdom UnitedKingdom E-mail:[email protected] E-mail:s.banks@sheffield.ac.uk ISBN978-1-84996-100-4 e-ISBN978-1-84996-101-1 DOI 10.1007/978-1-84996-101-1 LectureNotesinControlandInformationSciences ISSN0170-8643 LibraryofCongressControlNumber:2009942768 (cid:2)c2010Springer-VerlagBerlinHeidelberg (cid:2) (cid:2) MATLAB andSimulink areregisteredtrademarksofTheMathWorks,Inc.,3AppleHill Drive,Natick,MA01760-2098,USA.http://www.mathworks.com Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember 9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliableforprosecutionundertheGermanCopyrightLaw. Theuseofgeneral descriptive names,registered names,trademarks, etc. inthis publication does not imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Typeset&CoverDesign:ScientificPublishingServicesPvt.Ltd.,Chennai,India. Printedinacid-freepaper 543210 springer.com To my parents and brother, (M T-R). To David and Xu, (S P B). Preface This book is the culmination ofseveralyears’researchon nonlinearsystems. In contrast to the case of linear systems, where a coherent and well-defined theory has existed for many years (indeed, in many respects, we may regard linear systems theory as ‘complete’), nonlinear systems theory has tended to beasetofdisparateresultsonfairlyspecifickindsofsystems.Ofcourse,there arecoherenttheories ofnonlinearsystems using differentialand/oralgebraic geometric methods, but, in many cases, these have very strong conditions attached which are not satisfied in general. In an attempt to build a theory which has great generality we have been led to consider systems with the structure x˙ = A(x;u)x+B(x;u)u (possibly also with a measurement equation). This appearstobe quite restrictive,but, asweshallsee,almosteverysys- tem canbe put in this form,so that the theory is, infact, almostcompletely general. We shall show that systems of this form can be approximated arbi- trarilyclosely(onanyfinitetimeinterval-nomatterhowlarge)byasequence of linear, time-varying systems. This opens up the prospect of using existing lineartheoryinthe(global)solutionofnonlinearproblemsanditisthiswith whichthebookisconcerned.Itisaresearchmonograph,butitcouldbeused asagraduate-leveltext;wehavetriedtokeepthenotationstandard,sothat, for the most part, the mathematical language is well-known. In some parts of the book, some previous knowledge of Lie algebras, differential geometry and functional analysis is necessary. Since there are, of course, many excel- lent(classical)textsonthesesubjects,wehavemerelygivenreferencestothe requisite mathematical ideas. Now we outline the detailed contents of the book. In Chapter 1 we intro- duce the systems with which we shall be interested and show how they are relatedto the mostgeneralnonlinearsystems. Chapter 2 begins the detailed analysisofthesesystems,andinparticular,we discussthe‘iterationscheme’ VIII Preface whichis the maintechnicaltoolofthe approach.Since the method givesrise to sequences of linear, time-varying systems, Chapter 3 is a detailed analy- sis of such systems; in particular, we determine some explicit solutions and study the stability and spectral theory of these systems. In Chapter 4 we showthatmuchofthelinearspectraltheoryofsystemscanbegeneralisedto nonlinear systems and in Chapter 5 we give a main application of the ideas to the spectral assignmentproblem in nonlinear systems. Optimal controlof linear systems is a major part of ‘classical’ control theory and in Chapter 6 we show how to use the iteration method to extend the theory to nonlin- earsystems.WealsodiscusstheoptimalityviatheHamilton-Jacobi-Bellman equation.The needfor morerobustcontrollersled to the discoveryofsliding controllers, which again are generalised to nonlinear systems (and nonlinear sliding surfaces)inChapter7.InChapter 8we showhowthe method relates to fixed-point theory and how it can be used inductively to derive certain conditions on nonlinear systems. The generalisationof the technique to par- tial differential equations and systems is given in Chapter 9, together with examples from moving boundary problems and solitons (nonlinear waves). Lie algebraic methods have significant impact on linear systems theory and in Chapter 10 we see that it can also give a powerful structure theory for nonlinear systems. The global theory of nonlinear systems on manifolds is outlined in Chapter 11 where we show how to piece together a number of local systems into a global one by use of the theory of connections. Low- dimensional systems on manifolds are considered in the cases of 2, 3 and 4 dimensions. Finally, in Chapter 12, we speculate on the future possibilities of the iteration method and show that it is likely to be applicable in many other circumstances in nonlinear systems theory. The appendices give some background on linear algebra, Lie algebras, manifold theory and functional analysis. Finally, we should acknowledge the influence of many of our students and colleagues who have been associated with this work over the years and, in particular,MetinSalamci,TayfunCimen,DavidMcCaffrey,ClaudiaNavarro- Hernandez, Oscar Hugues-Salas, Zahra Sangelaji, Sherif Fahmy, Yi Song, Evren Gurkan Covasoglu, Xianhua Zheng, Chunyan Du, Wei Chen, Xu Xu, Salman Khalid, Serdar Tombul and Mehmet Itik. They have all contributed in various ways to the evolution of this technique. Sheffield, London, Mar´ıa Tom´as-Rodr´ıguez January 2010 Stephen P. Banks Contents 1 Introduction to Nonlinear Systems ...................... 1 1.1 Overview............................................. 1 1.2 Existence and Uniqueness .............................. 2 1.3 Logistic Systems ...................................... 3 1.4 Control of Nonlinear Systems ........................... 4 1.5 Vector Fields on Manifolds ............................. 5 1.6 Nonlinear PartialDifferential Equations .................. 6 1.7 Conclusions and Outline of the Book..................... 8 References ................................................ 9 2 Linear Approximations to Nonlinear Dynamical Systems ................................................. 11 2.1 Introduction .......................................... 11 2.2 Linear, Time-varying Approximations.................... 12 2.3 The Lorenz Attractor .................................. 16 2.4 Convergence Rate ..................................... 17 2.5 Influence of the Initial Conditions on the Convergence...... 20 2.6 Notes on Different Configurations ....................... 22 2.7 Comparison with the Classical Linearisation Method....... 23 2.8 Conclusions........................................... 26 References ................................................ 27 3 The Structure and Stability of Linear, Time-varying Systems ................................................. 29 3.1 Introduction .......................................... 29 3.2 Existence and Uniqueness .............................. 29 3.3 Explicit Solutions ..................................... 32 3.4 Stability Theory....................................... 46 3.5 Lyapunov Exponents and Oseledec’s Theorem............. 51 X Contents 3.6 Exponential Dichotomy and the Sacker-SellSpectrum ...... 57 3.7 Conclusions........................................... 59 References ................................................ 60 4 General Spectral Theory of Nonlinear Systems .......... 61 4.1 Introduction .......................................... 61 4.2 A Frequency-domain Theory of Nonlinear Systems......... 61 4.3 Exponential Dichotomies ............................... 70 4.4 Conclusions........................................... 73 References ................................................ 74 5 Spectral Assignment in Linear, Time-varying Systems ... 75 5.1 Introduction .......................................... 75 5.2 Pole Placement for Linear, Time-invariant Systems ........ 77 5.3 Pole Placement for Linear, Time-varying Systems.......... 79 5.4 Generalisation to Nonlinear Systems ..................... 89 5.5 Application to F-8 Crusader Aircraft..................... 94 5.6 Conclusions........................................... 97 References ................................................ 98 6 Optimal Control......................................... 101 6.1 Introduction .......................................... 101 6.2 Calculus of Variations and Classical Linear Quadratic Control ..................................... 101 6.3 Nonlinear Control Problems ............................ 106 6.4 Examples............................................. 109 6.5 The Hamilton-Jacobi-Bellman Equation, Viscosity Solutions and Optimality ............................... 114 6.6 Characteristics of the Hamilton-Jacobi Equation........... 117 6.7 Conclusions........................................... 120 References ................................................ 121 7 Sliding Mode Control for Nonlinear Systems............. 123 7.1 Introduction .......................................... 123 7.2 Sliding Mode Control for Linear Time-invariant Systems ... 124 7.3 Sliding Mode Control for Linear Time-varying Systems..... 125 7.4 Generalisation to Nonlinear Systems ..................... 129 7.5 Conclusions........................................... 137 References ................................................ 139 Contents XI 8 Fixed Point Theory and Induction....................... 141 8.1 Introduction .......................................... 141 8.2 Fixed Point Theory.................................... 141 8.3 Stability of Systems.................................... 145 8.4 Periodic Solutions ..................................... 147 8.5 Conclusions........................................... 149 References ................................................ 150 9 Nonlinear Partial Differential Equations ................. 151 9.1 Introduction .......................................... 151 9.2 A Moving Boundary Problem ........................... 152 9.3 Solution of the Unforced System......................... 153 9.4 The Control Problem .................................. 155 9.5 Solitons and Boundary Control.......................... 161 9.6 Conclusions........................................... 167 References ................................................ 167 10 Lie Algebraic Methods .................................. 169 10.1 Introduction .......................................... 169 10.2 The Lie Algebra of a Differential Equation................ 170 10.3 Lie Groups and the Solution of the System ............... 174 10.4 Solvable Systems ...................................... 177 10.5 The Killing Form and Invariant Spaces................... 179 10.6 Compact Lie Algebras ................................. 185 10.7 Modal Control ........................................ 190 10.8 Conclusions........................................... 194 References ................................................ 194 11 Global Analysis on Manifolds............................ 195 11.1 Introduction .......................................... 195 11.2 Dynamical Systems on Manifolds........................ 196 11.3 Local Reconstruction of Systems ........................ 197 11.4 Smooth Transition Between Operating Conditions ......... 199 11.5 From Local to Global .................................. 201 11.6 Smale Theory......................................... 203 11.7 Two-dimensional Manifolds ............................. 205 11.8 Three-dimensional Manifolds............................ 208 11.9 Four-dimensional Manifolds............................. 212 11.10Conclusions .......................................... 215 References ................................................ 216 12 Summary, Conclusions and Prospects for Development ............................................ 219 12.1 Introduction .......................................... 219 12.2 TravellingWaveSolutionsinNonlinearLattice Differential Equations ............................................ 219 XII Contents 12.3 Travelling Waves ...................................... 220 12.4 An Approach to the Solution ........................... 221 12.5 A Separation Theorem for Nonlinear Systems ............. 222 12.6 Conclusions........................................... 227 References ................................................ 227 A Linear Algebra .......................................... 229 A.1 Vector Spaces......................................... 229 A.2 Linear Dependence and Bases........................... 231 A.3 Subspaces and Quotient Spaces ......................... 233 A.4 Eigenspaces and the Jordan Form ....................... 234 References ................................................ 237 B Lie Algebras............................................. 239 B.1 Elementary Theory .................................... 239 B.2 Cartan Decompositions of Semi-simple Lie Algebras ....... 241 B.3 Root Systems and Classification of Simple Lie Algebras .... 244 B.4 Compact Lie Algebras ................................. 254 References ................................................ 255 C Differential Geometry ................................... 257 C.1 Differentiable Manifolds ................................ 257 C.2 Tangent Spaces ....................................... 258 C.3 Vector Bundles........................................ 259 C.4 Exterior Algebra and de Rham Cohomology .............. 260 C.5 Degree and Index...................................... 261 C.6 Connections and Curvature ............................. 264 C.7 Characteristic Classes.................................. 267 References ................................................ 269 D Functional Analysis...................................... 271 D.1 Banach and Hilbert Spaces ............................. 271 D.2 Examples............................................. 274 D.3 Theory of Operators ................................... 275 D.4 Spectral Theory....................................... 277 D.5 Distribution Theory ................................... 280 D.6 Sobolev Spaces........................................ 285 D.7 Partial Differential Equations ........................... 287 D.8 Semigroup Theory..................................... 289 D.9 The Contraction Mapping and Implicit Function Theorems ............................................ 292 References ................................................ 293 Index........................................................ 295

Description:
Linear, Time-varying Approximations to Nonlinear Dynamical Systems introduces a new technique for analysing and controlling nonlinear systems. This method is general and requires only very mild conditions on the system nonlinearities, setting it apart from other techniques such as those – well-kno
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.