ebook img

Linear Systems: A Measurement Based Approach PDF

94 Pages·2013·3.349 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Linear Systems: A Measurement Based Approach

SPRINGER BRIEFS IN APPLIED SCIENCES AND TECHNOLOGY S. P. Bhattacharyya L. H. Keel D. N. Mohsenizadeh Linear Systems A Measurement Based Approach SpringerBriefs in Applied Sciences and Technology For furthervolumes: http://www.springer.com/series/8884 S. P. Bhattacharyya L. H. Keel • D. N. Mohsenizadeh Linear Systems A Measurement Based Approach 123 S. P.Bhattacharyya D.N.Mohsenizadeh Electrical EngineeringDepartment Mechanical Engineering Texas A&MUniversity Texas A&MUniversity College Station, TX College Station, TX USA USA L.H.Keel Electrical andComputer Engineering Tennessee State University Nashville, TN USA ISSN 2191-530X ISSN 2191-5318 (electronic) ISBN 978-81-322-1640-7 ISBN 978-81-322-1641-4 (eBook) DOI 10.1007/978-81-322-1641-4 SpringerNewDelhiHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013947780 (cid:2)TheAuthor(s)2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through Rights Link at the CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To Gisele, for her love and support SPB To My Wife, Kuisook LHK To my mother, Shamsozzoha, my father, Mohammad Farid, and my brother, Mehrdad DNM Preface This monograph presents the recent results obtained by us on the analysis, synthesis and design of systems described by linear equations. As is well known, linear equations arise in most branches of science and engineering as well as social, biological and economic systems. The novelty of our approach lies in the fact that no models of the system are assumed to be available, nor are they required. Instead, we show that a few measurements made on the system can be processed strategically to directly extract design values that meet specifications without constructing a model of the system, implicitly or explicitly. We illustrate thesenewconceptsbyapplyingthemtolinearD.C.andA.C.circuits,mechanical, civilandhydraulicsystems,signalflowblockdiagramsandcontrolsystems.These applications are preliminary and suggest many open problems. We acknowledge many productive discussions with our colleagues A. Datta, Hazem Nounou, Mohamed NounouandourgraduatestudentsRitwikLayekandSirishaKallakuri. Earlierresearchbyushasshownthattherepresentationofcomplexsystemsby high order models with many parameters may lead to fragility, that is, the drastic change of system behaviour under infinitesimally small perturbations of these parameters. This led to research on model-free measurement-based approaches to design. The results presented in this monograph are our latest effort in this direction and we hope they will lead to attractive alternatives to model-based designofengineeringandothersystems.Wealsoanticipateapplicationstorobust, adaptive and fault tolerant control. College Station, USA, June 25, 2013 S. P. Bhattacharyya L. H. Keel D. N. Mohsenizadeh vii Contents 1 Linear Equations with Parameters. . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Parameterized Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Measurements and Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.1 Polynomial Models. . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.2 Rational Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Determining a General Parameterized Solution from Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4.1 A Generalized Superposition Theorem. . . . . . . . . . . . . . 11 1.4.2 A Measurement Theorem. . . . . . . . . . . . . . . . . . . . . . . 14 1.5 Notes and References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 Application to DC Circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Current Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1 Current Control Using a Single Resistor . . . . . . . . . . . . 20 2.2.2 Current Control Using Two Resistors . . . . . . . . . . . . . . 25 2.2.3 Current Control Using m Resistors . . . . . . . . . . . . . . . . 27 2.2.4 Current Control Using Gyrator Resistance . . . . . . . . . . . 29 2.2.5 Current Control Using m Independent Sources. . . . . . . . 31 2.3 Power Level Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.1 Power Level Control Using a Single Resistor. . . . . . . . . 33 2.3.2 Power Level Control Using Two Resistors. . . . . . . . . . . 34 2.3.3 Power Level Control Using Gyrator Resistance . . . . . . . 35 2.4 Examples of DC Circuit Design . . . . . . . . . . . . . . . . . . . . . . . 35 2.5 Notes and References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3 Application to AC Circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.1 Current Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.1.1 Current Control Using a Single Impedance . . . . . . . . . . 44 3.1.2 Current Control Using Two Impedances . . . . . . . . . . . . 46 ix x Contents 3.1.3 Current Control Using Gyrator Resistance . . . . . . . . . . . 46 3.1.4 Current Control Using m Independent Sources. . . . . . . . 46 3.2 Power Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.1 Power Control Using a Single Impedance . . . . . . . . . . . 47 3.2.2 Power Control Using Two Impedances . . . . . . . . . . . . . 47 3.2.3 Power Control Using Gyrator Resistance. . . . . . . . . . . . 48 3.3 An Example of AC Circuit Design . . . . . . . . . . . . . . . . . . . . . 48 3.4 Notes and References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4 Application to Mechanical Systems. . . . . . . . . . . . . . . . . . . . . . . . 53 4.1 Mass-Spring Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2 Truss Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3 Hydraulic Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.3.1 Flow Rate Control Using a Single Pipe Resistance. . . . . 59 4.3.2 Flow Rate Control Using Two Pipe Resistances. . . . . . . 61 4.4 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.4.1 An Example of Mass-Spring Systems . . . . . . . . . . . . . . 62 4.4.2 An Example of Truss Structures. . . . . . . . . . . . . . . . . . 64 4.4.3 An Example of Hydraulic Networks . . . . . . . . . . . . . . . 66 4.5 Notes and References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5 Application to Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.2 Block Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.3 SISO Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.3.1 Functional Dependency on a Single Controller. . . . . . . . 73 5.3.2 Determining a Desired Response . . . . . . . . . . . . . . . . . 74 5.3.3 Steps to Controller Design. . . . . . . . . . . . . . . . . . . . . . 74 5.4 An Example of Control System Design . . . . . . . . . . . . . . . . . . 75 5.5 Notes and References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 About the Authors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 About the Book. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Chapter 1 Linear Equations with Parameters In this chapter, we describe some basic results on the solution of linear equations containing parameters, and the nature of the parameterized solutions. We describe how measurements can be used to extract these parameterized solutions when the equationsormodelsareunknown.ThesearepresentedasageneralizedSuperposition TheoremandaMeasurementTheorem. 1.1 Introduction Considerthesystemoflinearequations Ax=b, (1.1) whereAisann×n matrix,andxandbaren×1vectorsallwithrealorcomplex entries.Let|.|denotesthedeterminant.Assumingthat|A|(cid:2)=0,thereexistsaunique solutionxand,byCramer’srule,theithcomponentx ofxisgivenby i (cid:2) (cid:2) (cid:2)Ai(b)(cid:2) x = , i =1,2,...,n (1.2) i |A| whereAi(b)isthematrixobtainedbyreplacingtheithcolumnofAbyb. Inmanyphysicalproblems,Aandbcontainparametersthatneedtobechosen ordesigned,asillustratedintheexamplebelow. Example1.1. ConsiderthecircuitshowninFig.1.1. V istheidealvoltagesource, I is the ideal current source, R ,R ,R are linear resistors, and R is a gyrator 1 2 3 4 resistance.Thegyratorisalineartwoportdevicewheretheinstantaneouscurrents andtheinstantaneousvoltagesarerelatedbyV = R I andV = −R I .V is 2 4 2 1 4 3 amp the dependent voltage of the amplifier where V = KI , and K is the amplifier amp 1 gain. The equations of the system can be written in the following matrix form by applyingKirchhoff’scurrentandvoltagelaws, S.P.Bhattacharyyaetal.,LinearSystems,SpringerBriefsinAppliedSciences 1 andTechnology,DOI:10.1007/978-81-322-1641-4_1,©TheAuthor(s)2014 2 1 LinearEquationswithParameters I I I 1 2 gyrator 3 A R R R 1 2 R 3 4 + + + + V I V 1 V 2 − − − Vamp= KI1 − Fig.1.1 Ageneralcircuit ⎡ ⎤⎡ ⎤ ⎡ ⎤ 1 −1 0 I I 1 ⎣R R − R ⎦⎣I ⎦=⎣V ⎦. (1.3) 1 2 4 2 K − R R I 0 (cid:7) (cid:8)(cid:9)4 3 (cid:10)(cid:7) (cid:8)3(cid:9) (cid:10) (cid:7) (cid:8)(cid:9) (cid:10) A x b Tofixnotation,weintroducetheparametervectorpandthevectorofsourcesq: ⎡ ⎤ ⎡ ⎤ R p 1 1 ⎢ ⎥ ⎢ ⎥ (cid:13) (cid:14) (cid:13) (cid:14) p:=⎢⎢⎢⎣RRR23⎥⎥⎥⎦=⎢⎢⎢⎣ppp23⎥⎥⎥⎦ andq:= VI = qq21 , (1.4) 4 4 K p 5 so that (1.1) can be rewritten showing explicitly the dependence on the parameter vectorpandthesourcevectorqas A(p)x=b(q). (1.5) Thus,(1.2)canalsoberewrittenexplicitlyshowingtheparameterizedsolutionas (cid:2) (cid:2) (cid:2)Ai(p,b(q))(cid:2) |B (p,q)| x (p,q)= := i , i =1,2,...,n. (1.6) i |A(p)| |A(p)| Moregenerally,if y(p,q)=cTx(p,q)=c x (p,q)+···+c x (p,q) (1.7) 1 1 n n isanoutputofinterest,itfollowsthat (cid:16) (cid:17) (cid:15)n |B (p,q)| y(p,q)= c i . (1.8) i |A(p)| i=1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.