Series in Contemporary Mathematics 1 Anders Lindquist Giorgio Picci Linear Stochastic Systems A Geometric Approach to Modeling, Estimation and Identifi cation Series in Contemporary Mathematics Volume 1 Editor-in-Chief TatsienLi Editors PhilippeG.Ciarlet Jean-MichelCoron WeinanE JianshuLi JunLi TatsienLi FanghuaLin Zhi-mingMa AndrewJ.Majda CédricVillani Ya-xiangYuan WeipingZhang Series in Contemporary Mathematics, featuring high-quality mathematical monographs, is to presents original and systematic findings from the fields of puremathematics,appliedmathematicsandmath-relatedinterdisciplinarysubjects. IthasahistoryofoverfiftyyearssincethefirsttitlewaspublishedbyShanghai Scientific&TechnicalPublishersin1963.ProfessorHUALuogeng(Lo-KengHua) served as Editor-in-Chief of the first editorial board, while Professor SU Buqing actedasHonoraryEditor-in-ChiefandProfessorGUChaohaoasEditor-in-Chiefof thesecondeditorialboardsince 1992.Now thethirdeditorialboardis established andProfessorLITatsienassumesthepositionofEditor-in-Chief. Theserieshasalreadypublishedtwenty-sixmonographsinChinese,andamong theauthorsaremanydistinguishedChinesemathematicians,includingthefollowing members of the Chinese Academy of Sciences: SU Buqing, GU Chaohao, LU Qikeng, ZHANG Gongqing, CHEN Hanfu, CHEN Xiru, YUAN Yaxiang, CHEN Shuxingetc.Themonographshavesystematicallyintroducedanumberofimportant research findings which not only play a vital role in China, but also exert huge influence all over the world. Eight of them have been translated into English and publishedabroad. The new editorial board will inherit and carry forward the former traditions and strengths of the series, and plan to further reform and innovation in terms of internalization so as to improve and ensure the quality of the series, extend its global influence, and strive to forge it into an internationally significant series of mathematicalmonographs. Moreinformationaboutthisseriesathttp://www.springer.com/series/13634 Anders Lindquist • Giorgio Picci Linear Stochastic Systems A Geometric Approach to Modeling, Estimation and Identification 123 AndersLindquist GiorgioPicci DepartmentsofAutomation DepartmentofInformationEngineering andMathematics UniversityofPadova ShanghaiJiaotongUniversity Padova,Italy Shanghai,China DepartmentofMathematics RoyalInstituteofTechnology Stockholm,Sweden ISSN2364-009X ISSN2364-0103 (electronic) SeriesinContemporaryMathematics ISBN978-3-662-45749-8 ISBN978-3-662-45750-4 (eBook) DOI10.1007/978-3-662-45750-4 LibraryofCongressControlNumber:2015936904 MathematicsSubjectClassification:93-XX,60-XX,47L05,47L30 SpringerHeidelbergNewYorkDordrechtLondon ©Springer-VerlagBerlinHeidelberg2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper Springer-VerlagGmbHBerlinHeidelbergispartofSpringerScience+Business Media(www.springer. com) Preface This book is intended to be a treatise on the theory and modeling of second- orderstationary processeswith an expositionof some applicationareas which we believeareimportantinengineeringandappliedsciences.Thefoundationalissues regardingstationaryprocessesdealtwithin thebeginningofthebookhavea long history and have been developed in the literature starting at least from the 1940s withtheworkofKolmogorov,Wiener,Cramèrandhisstudents,inparticularWold, and have been refined and complemented by many others. Problems of filtering and modelingof stationary random signals and systems have also been addressed and studied, fostered by the advent of modern digital computers, since the early 1960s with the fundamental work of R.E. Kalman. Classical books on random processesdidnotaddresstheselastissues,inparticularstate-spacemodeling,which isparticularlyimportantinapplications. Whenwe firststartedplanningthisbookseveraldecadesago,the drivingforce was ourconvictionthatbasic resultson modeling,estimationandidentificationin the literature were presented in a rather scattered and incomplete way, sometimes obscured by formula manipulations, and, in our opinion, a lack of a conceptual threadunifyingthevarioussubjectswasparticularlyevident.Manydetailsandsome technicalaspectsthatoccurfrequentlyaretraditionallyignoredalsotoday.Forthis reason, we wanted to offer a unified and logically consistent view of the subject based on simple ideas from Hilbert space geometry and coordinate-freethinking. Inthisframework,theconceptsofstochasticstatespaceandstate-spacemodeling based on the idea of conditionalindependenceof the past and future flows of the relevantsignalsturnouttobeafundamentalunifyingidea. Since then, books by P.E. Caines, Gy. Michaletzky et al. and others have appeared,coveringsomeoftheseconcepts,howeverwithadifferentfocusthanwe hadplanned.Alsoasthesubjecthasevolved,newtheoryandapplicationshavebeen added. Most of the material presented in this monographhas appeared in journal papers,buttherearealsonewresultsappearinghereforthefirsttime. Being the result of some decadesof jointeffort, this is notmeantto be a book for “seasonal consumption”. Quite immodestly, we imagine (or at least wish) it to be a lasting reference for students and researchers interested in this important v vi Preface and beautiful area of applied mathematics. We are indebted to a large number of coworkers in developing the theory of this book, especially G. Ruckebusch, M. Pavon,F.Badawi,Gy.Michaletzky,A.ChiusoandA.Ferrante,butalsoC.I.Byrnes, S.V. Gusev, A. Blomqvist, R. Nagamune and P. Enqvist, as well as to number of colleagues, among them O. Staffans, J. Malinen, P. Enqvist, Gy. Michaletzky, T.T. Georgiou, J. Karlsson and A. Ringh for reading parts of the manuscript and providingvaluablesuggestionsforimprovement. Shanghai,China,andStockholm,Sweden AndersLindquist Padova,Italy GiorgioPicci Contents 1 Introduction................................................................. 1 1.1 GeometricTheoryofStochasticRealization........................ 2 1.1.1 MarkovianSplittingSubspaces............................ 4 1.1.2 Observability,ConstructibilityandMinimality ........... 4 1.1.3 FundamentalRepresentationTheorem.................... 6 1.1.4 PredictorSpacesandPartialOrdering..................... 8 1.1.5 TheFrameSpace ........................................... 9 1.1.6 Generalizations ............................................. 10 1.2 SpectralFactorizationandUniformlyChosenBases............... 10 1.2.1 TheLinearMatrixInequalityandHankelFactorization.. 11 1.2.2 Minimality.................................................. 13 1.2.3 RationalCovarianceExtension ............................ 13 1.2.4 UniformChoiceofBases .................................. 14 1.2.5 TheMatrixRiccatiEquation............................... 15 1.3 Applications.......................................................... 16 1.3.1 Smoothing .................................................. 16 1.3.2 Interpolation ................................................ 17 1.3.3 SubspaceIdentification..................................... 17 1.3.4 BalancedModelReduction ................................ 19 1.4 AnBriefOutlineoftheBook........................................ 21 1.5 BibliographicalNotes................................................ 23 2 GeometryofSecond-OrderRandomProcesses......................... 25 2.1 HilbertSpaceofSecond-OrderRandomVariables................. 25 2.1.1 NotationsandConventions................................. 26 2.2 OrthogonalProjections............................................... 27 2.2.1 LinearEstimationandOrthogonalProjections............ 28 2.2.2 FactsAboutOrthogonalProjections....................... 31 2.3 AnglesandSingularValues.......................................... 33 2.3.1 CanonicalCorrelationAnalysis............................ 36 2.4 ConditionalOrthogonality........................................... 38 vii viii Contents 2.5 Second-OrderProcessesandtheShiftOperator.................... 40 2.5.1 Stationarity.................................................. 42 2.6 ConditionalOrthogonalityandModeling........................... 44 2.6.1 TheMarkovProperty....................................... 44 2.6.2 StochasticDynamicalSystems............................. 47 2.6.3 FactorAnalysis ............................................. 49 2.6.4 ConditionalOrthogonalityandCovarianceSelection .... 55 2.6.5 CausalityandFeedback-FreeProcesses................... 57 2.7 ObliqueProjections .................................................. 58 2.7.1 Computing Oblique Projections in the Finite-DimensionalCase................................... 61 2.8 StationaryIncrementsProcessesinContinuousTime.............. 62 2.9 BibliographicalNotes................................................ 63 3 SpectralRepresentationofStationaryProcesses ....................... 65 3.1 Orthogonal-IncrementsProcessesandtheWienerIntegral ........ 65 3.2 HarmonicAnalysisofStationaryProcesses ........................ 70 3.3 TheSpectralRepresentationTheorem .............................. 73 3.3.1 ConnectionstotheClassicalDefinitionof StochasticFourierTransform.............................. 75 3.3.2 Continuous-TimeSpectralRepresentation................ 77 3.3.3 RemarkonDiscrete-TimeWhiteNoise ................... 78 3.3.4 RealProcesses.............................................. 78 3.4 Vector-ValuedProcesses............................................. 79 3.5 FunctionalsofWhiteNoise.......................................... 82 3.5.1 TheFourierTransform ..................................... 85 3.6 SpectralRepresentationofStationaryIncrementProcesses........ 88 3.7 MultiplicityandtheModuleStructureofH.y/..................... 91 3.7.1 DefinitionofMultiplicityandtheModule StructureofH.y/........................................... 92 3.7.2 BasesandSpectralFactorization .......................... 95 3.7.3 ProcesseswithanAbsolutelyContinuous DistributionMatrix......................................... 99 3.8 BibliographicalNotes................................................ 100 4 Innovations,WoldDecomposition,andSpectralFactorization....... 103 4.1 TheWiener-KolmogorovTheoryofFilteringandPrediction...... 103 4.1.1 The Role of the Fourier Transformand SpectralRepresentation .................................... 104 4.1.2 AcausalandCausalWienerFilters ........................ 105 4.1.3 CausalWienerFiltering.................................... 108 4.2 OrthonormalizableProcessesandSpectralFactorization .......... 110 4.3 HardySpaces......................................................... 115 4.4 AnalyticSpectralFactorization...................................... 118 4.5 TheWoldDecomposition............................................ 119 4.5.1 Reversibility ................................................ 127 Contents ix 4.6 TheOuterSpectralFactor............................................ 129 4.6.1 InvariantSubspacesandtheFactorizationTheorem...... 131 4.6.2 InnerFunctions............................................. 135 4.6.3 ZerosofOuterFunctions................................... 136 4.7 ToeplitzMatricesandtheSzegöFormula........................... 138 4.7.1 AlgebraicPropertiesofToeplitzMatrices................. 146 4.8 BibliographicalNotes................................................ 150 5 SpectralFactorizationinContinuousTime ............................. 153 5.1 TheContinuous-TimeWoldDecomposition........................ 153 5.2 HardySpacesoftheHalf-Plane ..................................... 154 5.3 AnalyticSpectralFactorizationinContinuousTime............... 159 5.3.1 OuterSpectralFactorsinW2 .............................. 160 5.4 WideSenseSemimartingales........................................ 163 5.4.1 StationaryIncrementsSemimartingales................... 166 5.5 StationaryIncrementsSemimartingalesintheSpectralDomain .. 168 5.5.1 ProofofTheorem5.4.4..................................... 171 5.5.2 DegenerateStationaryIncrementsProcesses.............. 172 5.6 BibliographicalNotes................................................ 174 6 LinearFinite-DimensionalStochasticSystems.......................... 175 6.1 StochasticStateSpaceModels ...................................... 175 6.2 AnticausalStateSpaceModels...................................... 179 6.3 GeneratingProcessesandtheStructuralFunction.................. 183 6.4 TheIdeaofStateSpaceandCoordinate-FreeRepresentation..... 186 6.5 Observability,ConstructibilityandMinimality..................... 188 6.6 TheForwardandtheBackwardPredictorSpaces.................. 191 6.7 TheSpectralDensityandAnalyticSpectralFactors ............... 196 6.7.1 TheConverseProblem ..................................... 198 6.8 Regularity............................................................. 204 6.9 TheRiccatiInequalityandKalmanFiltering ....................... 207 6.10 BibliographicNotes.................................................. 213 7 TheGeometryofSplittingSubspaces.................................... 215 7.1 Deterministic Realization TheoryRevisited: The AbstractIdeaofStateSpaceConstruction.......................... 215 7.2 PerpendicularIntersection........................................... 217 7.3 SplittingSubspaces................................................... 220 7.4 MarkovianSplittingSubspaces...................................... 225 7.5 TheMarkovSemigroup.............................................. 232 7.6 MinimalityandDimension .......................................... 234 7.7 PartialOrderingofMinimalSplittingSubspaces................... 238 7.7.1 UniformChoicesofBases ................................. 240 7.7.2 OrderingandScatteringPairs.............................. 243 7.7.3 TheTightestInternalBounds.............................. 246 7.8 BibliographicNotes.................................................. 250