ebook img

Linear representations of SU(2) described by using Kravchuk polynomials PDF

0.13 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Linear representations of SU(2) described by using Kravchuk polynomials

Linear representations of SU(2) described by using Kravchuk polynomials Nicolae Cotfas University of Bucharest, Faculty of Physics, P.O. Box MG-11, 077125 Bucharest, Romania∗ We show that a new unitary transform with characteristics almost similar to those of the finite Fourier transform can be definedin any finite-dimensional Hilbert space. It is definedby using the Kravchuk polynomials, and we call it Kravchuk transform. Some of its properties are investigated and used in order to obtain a simple alternative description for the irreducible representations of the Lie algebra su(2) and group SU(2). Our approach offers a deeper insight into the structure of thelinearrepresentationsofSU(2)andnewpossibilitiesofcomputation,veryusefulinapplications 6 in quantummechanics, quantuminformation, signal and image processing. 1 0 2 INTRODUCTION functions, the matrix elements of the irreducible repre- b sentations have simpler mathematical expressions. e The Hilbert space Cd, of dimension d=2j+1, can be In conclusion, we define a new unitary transform K, F regarded as the space of all the functions of the form similartothefiniteFouriertransformF.WehaveF4 =I, 7 respectivelyK3 =I, and in both cases,the definitions of 1 ψ: j, j+1, ...,j 1,j C, the direct and inverse transforms are almost identical. {− − − }−→ The new transform K allows a new description of the ] considered with the scalar product defined as h linear representations of su(2), SU(2), SO(3), and new p developments in all the mathematical models based on j - ϕ,ψ = ϕ(n)ψ(n). (1) these representations. New models in physics, quantum h h i t n=−j information, quantum finance [3], signal and image pro- a P m The finite Fourier transform F:Cd Cd :ψ F[ψ], cessing can be obtained by using K instead of F. −→ 7→ [ j 6 F[ψ](k)=√1d e−2dπiknψ(n), (2) KRAVCHUK POLYNOMIALS v n=−j P 4 plays a fundamental role in quantum mechanics, signal The functions 2 andimageprocessing. Itsinverseistheadjointtransform 4 6 K j, K j+1,...,Kj 1,Kj: j, j+1,...,j 1,j R 0 F+[ψ](k)= 1 j e2dπiknψ(n), (3) − − − {− − − }−→ . √d satisfying the polynomial relation [14] 1 n= j − 0 P 6 and F4 = I, where I is the identity operator Iψ = ψ. In j 1 the caseofaquantumsystemwith HilbertspaceCd,the (1 X)j+k(1+X)j−k = Km(k)Xj+m (7) − v: self-adjoint operator Q:Cd−→Cd :ψ 7→Qψ, mX=−j i X (Qψ)(n)=nψ(n), (4) arecalledKravchuk polynomials. The firstthree of them r are: K j(k)=1, K j+1(k)= 2k, K j+2(k)=2k2 j. a is usually regardedas a coordinate operator and By a−dmitting tha−t − − − P=F+QF (5) 1 =0 for n 0, 1, 2,... Γ(n) ∈{ − − } as a momentum operator [4, 5, 12, 15]. and using the binomial coefficients We show that a new remarkable unitary transform K:Cd Cd (6) Cmn=Γ(n+1Γ)(mΓ(+m1)n+1) −→ − m! for n 0,1,2,...,m , (8) ctraannsbfeordmefisnaetdisfibeysutshiengunthexepKecrtaevdchrueklatpioolnynKom3 =ialIs,.aOnudr =( n!(m0−n)! for n∈Z{ 0,1,2,...,}m . ∈ \{ } iQ, iK+QK, iKQK+ the Kravchuk polynomials can be defined as − − − form a basis of a Lie algebra isomorphic to su(2). This j+m arellsoewntsautisontos oofbtSaUin(2a)naenwddSeOsc(r3i)p.tiIonntfeorrmtsheofliKneraavrcrheupk- Km(k)= (−1)nCjn+kCjj−+km−n. (9) n=0 X 2 The hypergeometric function Theorem 1. Kravchuk polynomials satisfy the relation 2F1(cid:18) a,cb(cid:12)(cid:12)z(cid:19)=Xk∞=0(a)(kc)(kb)k zkk!, (10) kX=j−j(−i)kKm(k)Kk(n)=2jij+mij+nKm(n) (16) (cid:12) where (cid:12) for any m,n j, j+1,...,j 1,j . ∈{− − − } Γ(α+k) (α) =α(α+1)...(α+k 1)= , k Proof. Direct consequence of the polynomial relation − Γ(α) satisfies the relation [10] j j ( i)j+kK (k)K (n) Xj+m m k m= j k= j − ! n, β − − 2F1 −γ z = ΓΓ((γγ+)nΓ)(γΓ−(βγ+βn)) P = Pj ( i)j+k(1 X)j+k(1+X)j kK (n) (cid:18) (cid:12) (cid:19) − (11) − − − k (cid:12) n, β k= j (cid:12)(cid:12) ×2F1(cid:18)β−−γ−n+1(cid:12)1−z(cid:19). =(1P+−X)2j j Kk(n) XX+−11i j+k. (cid:12) k= j Since (−α)k=(−1)kΓ(α+1)/Γ(α−k+1)(cid:12)(cid:12),the relation =(1+X)2j P1− X 1i (cid:16)j+n 1(cid:17)+ X 1i j−n − X+−1 X+−1 2F1(cid:18)−j1−−mk,−−mj−k(cid:12)−1(cid:19)= ΓΓ((j1−−kk+−1m)Γ)(Γj(−2mj++11)) =(1+i+(1(cid:16)−i)X)j+n(cid:17)(1−i(cid:16)+(1+i)X)(cid:17)j−n (cid:12)(cid:12)(cid:12) ×2F1 −j−m,2j−j−k 2 =(1+i)j+n(1−i)j−n(1−iX)j+n(1+iX)j−n (cid:18) − (cid:12) (cid:19) (cid:12) j can be written as (cid:12)(cid:12) =2j(−i)jij+n Km(n)(iX)j+m. (cid:3) m= j − j m, j k P Km(k)=C2jj+m2F1 − − 2j− − 2 . (12) By using (12), the relation (16) can be written as (cid:18) − (cid:12) (cid:19) (cid:12) From the polynomial relation (cid:12)(cid:12) j (−i)k (j+k()2!j()j! k)! 2F1 −j−m,2j−j−k 2 k= j − (cid:18) − (cid:12) (cid:19) j j P− (cid:12) 1 Cj+kK (k)K (k) Xj+mYj+n j k, j n(cid:12) m,n= j 22j k= j 2j m n ! ×2F1 − − 2−j − (cid:12)2 (17) P− j P− j j (cid:18) − (cid:12) (cid:19) ===2212112jjk[=Pk(j=1P−−jCjX2jCj+)2jk(j+1(k1−mYP=X)−+)jj+K(1km+(1(Xk+))XX(1)j+j+−Ymk()1n]2−=Pj−Y=j)K(j1+nk+((k1X)+YYYj)+)2jnj−k and is a s=pe2cjiaijl+cmasiej+fnor2F(112(cid:18))−frjo−mm−[6,2]j−anj−dn(5(cid:12)(cid:12)(cid:12)(cid:12).5(cid:12)(cid:12)(cid:12)2)(cid:19)fr,om [8]. 22j − − j = Cj+mXj+mYj+m. KRAVCHUK FUNCTIONS 2j m= j − P The space Cd can be regarded as a subspace of the it follows the well-known relation [10, 14] space of all the functions of the form ψ : Z C by −→ j identifying it either with the space 1 Cj+kK (k)K (k)=Cj+mδ . (13) 22j k=P−j 2j m n 2j mn ℓ2(Zd)={ ψ:Z−→C | ψ(n+d)=ψ(n) for any n∈Z } (18) We extend the set K j by admitting that { m}m=−j of periodic functions of period d or with the space Km =0 for m Z j, j+1,...,j 1,j . ℓ2[ j,j]= ψ:Z C ψ(n)=0 for n >j (19) ∈ \{− − − } − { −→ | | | } With this convention, by differentiating (7) we get of all the functions null outside j, j+1,...,j 1,j . The use of ℓ2(Z ) or ℓ2[ j,j] a{l−lows−us to defin−e ne}w d (j+m+1)K (k) − m+1 mathematical objects and to obtain new results. The (14) +(j−m+1)Km−1(k)=−2kKm(k). functions Km:Z−→R, defined as For the half-integer powers we use the definiton 1 Cj+k K (k)= 2j K (k) (20) zk = z keikarg(z). (15) m 2jvuC2jj+m m | | u t 3 canbeexpressedintermsofthehypergeometricfunction The transform K :ℓ2[ j,j] ℓ2[ j,j], − −→ − 1 j m, j k j Km(k)= 2jqC2jj+mC2jj+k 2F1(cid:18)− −−2j− − (cid:12)(cid:12)2(cid:19), (21) K =(−1)2jn,mX=−jinK−n(m) |j;nihj;m|, (29) belong to ℓ2[ j,j], and satisfy the relations (cid:12)(cid:12) we call Kravchuk transform, is a unitary operator. − The direct and inverse transforms are quite identical: K (n)=K (m), K ( n)=( 1)j+mK (n). m n m m − − j The functions K j , called Kravchuk functions, K[ψ](n) = ( 1)2j in( 1)j+m Kn(m)ψ(m) form an orthono{rmma}lmb=as−isj in ℓ2[ j,j], that is, we have − mPj=−j − − K+[ψ](n)=( 1)2j ( i)m( 1)j+nK (m)ψ(m). n − − − j m= j − K K =δ , K K =I. (22) P h m| ni mn | mih m| The operator Q:ℓ2[ j,j] ℓ2[ j,j], (Qψ)(n)=nψ(n), m= j − → − X− admitting the spectral decomposition From (14) we get the relation j Q= n j;n j;n, (30) | ih | (j−m)(j+m+1) Km+1(k) n=P−j (23) can be regarded as a coordinate operator in ℓ2[ j,j]. p + (j+m)(j−m+1) Km−1(k)=−2kKm(k) Theorem 3. Kravchuk transform satisfies the −relations p and its direct consequence K3 =I (31) (j+m)(j m+1) for n=m 1 j − − K+QK+QK+ KQKQK =iQ. (32) 2 kKm(k)Kn(k)=p(j m)(j+m+1) for n=m+1 − − kX=−j p0 − for n=m 1.Proof. A consequence of the equality (26) is the relation 6 ± Therelation(23)canalsobewrittenintheform[1,2,(2144)] K2 = j j im+kK m(k)K k(n) j;m j;n n,m= jk= j − − | ih | j P− P− j (j m)(j+m+1)K (m+1) = ( 1)j+nim j( i)j ( i)kK (k)K (n) j;m j;n k − m k − (25) n,m= −j − k= j− | ih | p+ (j+m)(j m+1)K (m 1)= 2kK (m). Pj− P− − k − − k = ( 1)j+m+nij+n( i)jKm(n) j;m j;n − − | ih | Theorpem2. TheKravchukfunctionssatisfytherelation n,mPj=−j = ( 1)nij+n( i)jK (m) j;m j;n =K+ n j n,m= j − − − | ih | − ( i)kK (k)K (n)=ij+mij+nK (n) (26) P − m k m which shows that K3 =I. From (24) and k= j X− j for any m,n j, j+1,...,j 1,j . QK+QK j;m = ( 1)m+nn ∈{− − − } | i − n= j P− j Proof. Direct consequence of (16) and (20). (cid:3) kK (k)K (k) j;n m n × | i k= j j P− K+QKQj;m = ( 1)m+nm KRAVCHUK TRANSFORM | i − n= j P− j kK (k)K (k) j;n The functions {δm}jm=−j, defined by the relation j ×k=P−j m n | i KQK+ j;m = ( i)min δ :Z C, δ (k)=δ = 1 for k=m, (27) | i n= j − m −→ m km ( 0 for k6=m, P− j kK (k)K (k) j;n m n × | i k= j formanorthonormalbasisintheHilbertspaceCd. With P− the traditional notation j;m instead of δ , we have it follows the relation m | i QK+QK K+QKQ=iKQK+ j − j;mj;n =δ and j;m j;m =I. (28) h | i mn | ih | equivalent to (32). (cid:3) m= j − P 4 THE IRREDUCIBLE REPRESENTATIONS OF QUANTUM SYSTEMS WITH FINITE THE LIE ALGEBRA su(2) AND GROUP SU(2) DIMENSIONAL HILBERT SPACE Theorem 4. The self-adjoint operators In the continuous case, the coordinate operator (qˆψ)(q)=qψ(q) and the momentum operator pˆ= i d Jz =Q, Jx =K+QK, Jy =KQK+ (33) − dq satisfy the relation pˆ= +qˆ , where satisfy the relations F F [Jx,Jy]=iJz, [Jy,Jz]=iJx, [Jz,Jx]=iJy (34) F[ψ](p)= √12π ∞ e−ipqψ(q) (37) and define a linear representation of su(2) in ℓ2[ j,j]. Z−∞ − is the Fourier transform. In the finite-dimensional case, Proof. Eachof the relations (34) is equivalent to (32). (cid:3) P =F+QF definedbyusingthefiniteFouriertransform, is usually regarded as a momentum operator [5, 12, 15]. The operators J =Jx iJy verify the relations ByfollowingAtakishyiev,Wolfet al. [1,2,16],we can ± ± consider P˜ = K+QK as a second candidate for the role [J ,J ]= J , [J ,J ]= 2J , (35) z ± ± ± − + − z of momentum operator. In this case [Q,P˜]=iJy, and and, by using (24), one can prove that 1 1 j(j+1) 1 Jz|j;mi=m|j;mi H˜=2P˜2+ 2Q2 = 2 − 2Jy2 (38) J j;m = (j m)(j+m+1) j;m+1 (36) + corresponds to the quantum harmonic oscillator. | i − | i J j;m =p(j+m)(j m+1) j;m 1 . The function K j;m is an eigenstate of H˜ for any m. −| i − | − i | i The author is grateful to J. Van der Jeugt for letting In certain cases, pit is useful to describe the structure of him know that the relation (16) from Theorem 1 is a J , J , J by using only two operators. Beside z x y special case of a known identity concerning the hyperge- 1 1 J , J = (J +J+), J = (J J+) ometric function. z x 2 + + y 2i +− + we have now the alternative representation (33), more advantageous when we pass form su(2) to SU(2) and SO(3). The operator J admits the decomposition x ∗ [email protected];http://fpcm5.fizica.unibuc.ro/˜ncotfas/ j j [1] M. K.Atakishyieva,N.M. Atakishyiev,and K.B. Wolf, Jx=K+ k j;k j;k K = k K k K k . J. Phys: Conf. Ser. 512, 012031 (2014). | ih | | − ih − | k= j k= j [2] N.M.AtakishyievandK.B.Wolf,1997J.Opt.Soc.Am. X− X− A 14, 1467 (1997). and consequently [3] L.-A. Cotfas, Physica A 392, 371 (2013). j j [4] N. Cotfas and D. Dragoman, J. Phys. A: Math. and e−iβJx = e−iβk K k K k = eiβk Kk Kk Theor. 46, 355301 (2013). k=P−jj j| − ih − | k=P−j | ih | [5] N. Cotfas, J.-P. Gazeau and A. Vourdas, J. Phys. A: = eiβkK (m)K (n) j;m j;n. Math. Theor. 44 175303 (2011). k k | ih | [6] A. Erd´elyi, Higher Transcedental Functions, Vol. 1, pag m,n= jk= j P− P− 85 (McGraw-Hill, New York,1953). In the case of the representation of SU(2) in ℓ2[ j,j], [7] J.-P. Gazeau, Coherent States in Quantum Physics − the element with Euler angles α, β, γ corresponds to (Berlin: Wiley-VCH,Berlin, 2009). [8] J.VanderJeugtandR.Jagannathan,J.Math.Phys.39 j e−iαJze−iβJxe−iγJz= e−i(αm+γn) 5062 (1998). m,n= j [9] W. Miller, Jr., Lie Theory and Special Functions (Aca- Pj − demic Press, New York,1968). eiβkKm(k)Kn(k) j;m j;n. [10] A.F.Nikiforov,S.K.SuslovandV.B.Uvarov,Classical × | ih | k=−j OrthogonalPolynomialsofaDiscreteVariable(Springer, P We think that, in certain applications, our description Berlin, 1991). of the linear representations of su(2) and SU(2) is more [11] A. M. Perelomov, Generalized Coherent States and their Applications (Springer, Berlin, 1986). advantageous than other known descriptions [9, 10, 13, [12] J. Schwinger, Proc. Natl. Acad. Sci. (USA) 46 570 14]. The spin coherent states [7, 11], that is, the orbit of (1960). SU(2) passing through j; j , is formed by the states [13] J. D. Talman, Special Functions. A Group Theoretical | − i α,β =e−iαJze−iβJxe−iγJz j; j Approach (Benjamin, New York,1968). | i | − i [14] N. Ja. Vilenkin, Fonctions Sp´eciales et Th´eorie de la =eijγ j e iαm j eiβk Cj+k K (k) j;m . Repr´esentation des Groupes (Dunod,Paris, 1969). 2j − 2j m | i [15] A. Vourdas, Rep.Prog. Phys.67 267 (2004). m=−j k=−j q [16] K.B. WolfandG. Kr¨otzsch,J.Opt.Soc.Am.A24651 P P Evidently, we can neglect the unimodular factor eijγ. (2007). 5 SUPPLEMENTARY INFORMATION The reader can directly check the relation (16) by using the program in Mathematica • j=10 K[m_,n_]:=Sum[(-1)^k Binomial[j+n, k] Binomial[j-n,j+m-k], {k,0,j+m}] MatrixForm[Table[Sum[(-I)^k K[m,k] K[k,n], {k,-j,j}] - (-2)^j I^(m+n) K[m,n], {m,-j,j}, {n,-j,j}]] for j 0,1,2,3,... , and the program ∈{ } j=3/2 K[m_,n_]:=Sum[(-1)^k Binomial[j+n, k] Binomial[j-n,j+m-k], {k,0,j+m}] N[MatrixForm[Table[Sum[(-I)^k K[m,k] K[k,n], {k,-j,j}] - (-2)^j I^(m+n) K[m,n], {m,-j,j}, {n,-j,j}]]] for j 1,3,5,... . ∈ 2 2 2 (cid:8) (cid:9) By using the program • j = 10 KP[m_, n_] := Sum[(-1)^k Binomial[j + n, k] Binomial[j - n, j + m - k], {k, 0, j + m}] KF[m_, n_] := (1/2^j) Sqrt[Binomial[2 j, j + n]/Binomial[2 j, j - m]] KP[m, n] K := Table[(-1)^(2 j) I^m KF[-m, n], {m, -j, j}, {n, -j, j}]; Jz := Table[m DiscreteDelta[m - n], {m, -j, j}, {n, -j, j}] Jx := K.K.Jz.K Jy := K.Jz.K.K MatrixForm[MatrixPower[K, 3]] MatrixForm[Jz] MatrixForm[Jx] MatrixForm[Jy] MatrixForm[Jx.Jy - Jy.Jx - I Jz] MatrixForm[Jy.Jz - Jz.Jy - I Jx] MatrixForm[Jz.Jx - Jx.Jz - I Jy] for j 0,1,2,3,... , and ∈{ } j = 3/2 KP[m_, n_] := Sum[(-1)^k Binomial[j + n, k] Binomial[j - n, j + m - k], {k, 0, j + m}] KF[m_, n_] := (1/2^j) Sqrt[Binomial[2 j, j + n]/Binomial[2 j, j - m]] KP[m, n] K := Table[(-1)^(2 j) I^m KF[-m, n], {m, -j, j}, {n, -j, j}]; Jz := Table[m DiscreteDelta[m - n], {m, -j, j}, {n, -j, j}] Jx := K.K.Jz.K Jy := K.Jz.K.K N[MatrixForm[MatrixPower[K, 3]]] N[MatrixForm[Jz]] N[MatrixForm[Jx]] N[MatrixForm[Jy]] N[MatrixForm[Jx.Jy - Jy.Jx - I Jz]] N[MatrixForm[Jy.Jz - Jz.Jy - I Jx]] N[MatrixForm[Jz.Jx - Jx.Jz - I Jy]] for j 1,3,5,... , one can directly verify the relation ∈ 2 2 2 (cid:8) (cid:9) K3 =I and to see that the operators J =K+QK, J =KQK+ and J =Q x y z satisfy the relations [J ,J ]=iJ , [J ,J ]=iJ , [J ,J ]=iJ . x y z y z x z x y 6 Itisknownthatsomeidentitiesforpowersfailforcomplexnumbers,nomatterhowcomplexpowersaredefined • as single-valued functions. For example: ( 1)21 =eπ2i − i21 =eπ4i and consequently ( 1)21 i21 =( i)21; ( i)21 =e−π4i − 6 − − (−1)12 =e1π212i==1i and consequently −11 21 6= ( 1112)12. (cid:16) (cid:17) − So, we have to be careful in computations involving half-integer powers of complex non-positive numbers. In our computations involving half-integer powers of 1, i, i, we use: − − – the definition zk = z keikarg(z); | | – the identity zk zm=zk+m for integer as well as half-integer k and m; – the identities zk zk=(z z )k and z1k= z1 k only for integer k. 1 2 1 2 z2k z2 (cid:16) (cid:17) The proofs of our theorems are based on the relations: • (1 i)2j =(√2)2je−2j4πi =2je−j2πi =2j( i)j; − − j+n (1+i)j+n(1 i)j n= 1+i (1 i)2j =ij+n(1 i)2j =2j( i)jij+n; − − 1 i − − − − (cid:16) (cid:17) im+k( 1)j+k( 1)j+n=( 1)j+nim jij+k( 1)j+k − − − − − =( 1)j+nim j( i)j+k =( 1)j+nim j( i)j( i)k; − − − − − − − ( 1)j+nim j( i)jij+mij+n=( 1)j+ni2mij+n( i)j =( 1)j+m+nij+n( i)j − − − − − − − =( 1)nij+n( i)j( 1)j+m − − − ( 1)nij+n( i)j= 1 ( 1)j+nij+n( i)j = 1 ( i)j+n( i)j = 1 ( i)2j( i)n − − ( 1)j − − ( 1)j − − ( 1)j − − − − − = ((−11))2jj (−i)2j(−i)n =(−1)j ((−1i))22jj (−i)n =(−1)j −1i 2j (−i)n =(−1)2j(−i)n. − − − (cid:16) (cid:17)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.