ebook img

Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces PDF

220 Pages·2012·1.941 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces

Operator Theory: Advances and Applications Volume 223 Founded in 1979 by Israel Gohberg Editors: Joseph A. Ball (Blacksburg, VA, USA) Harry Dym (Rehovot, Israel) Marinus A. Kaashoek (Amsterdam, The Netherlands) Heinz Langer (Vienna, Austria) Christiane Tretter (Bern, Switzerland) Associate Editors: Honorary and Advisory Editorial Board: Vadim Adamyan (Odessa, Ukraine) Lewis A. Coburn (Buffalo, NY, USA) Albrecht Böttcher (Chemnitz, Germany) Ciprian Foias (College Station, TX, USA) B. Malcolm Brown (Cardiff, UK) J.William Helton (San Diego, CA, USA) Raul Curto (Iowa, IA, USA) Thomas Kailath (Stanford, CA, USA) Fritz Gesztesy (Columbia, MO, USA) Peter Lancaster (Calgary, Canada) Pavel Kurasov (Lund, Sweden) Peter D. Lax (New York, NY, USA) Leonid E. Lerer (Haifa, Israel) Donald Sarason (Berkeley, CA, USA) Vern Paulsen (Houston, TX, USA) Bernd Silbermann (Chemnitz, Germany) Mihai Putinar (Santa Barbara, CA, USA) Harold Widom (Santa Cruz, CA, USA) Leiba Rodman (Williamsburg, VA, USA) Ilya M. Spitkovsky (Williamsburg, VA, USA) Subseries Linear Operators and Linear Systems Subseries editors: Daniel Alpay (Beer Sheva, Israel) Birgit Jacob (Wuppertal, Germany) André C.M. Ran (Amsterdam, The Netherlands) Subseries Advances in Partial Differential Equations Subseries editors: Bert-Wolfgang Schulze (Potsdam, Germany) Michael Demuth (Clausthal, Germany) Jerome A. Goldstein (Memphis, TN, USA) Nobuyuki Tose (Yokohama, Japan) Ingo Witt (Göttingen, Germany) Birgit Jacob Hans J. Zwart Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces L Linear O Operators and L Linear S Systems Birgit Jacob Hans J. Zwart Fachbereich C Department of Applied Mathematics Bergische Universität Wuppertal University of Twente Wuppertal, Germany Enschede, Netherlands ISBN 978-3-0348-0398-4 ISBN 978-3-0348-0399-1 (eBook) DOI 10.1007/978-3-0348-0399-1 Springer Basel Heidelberg New York Dordrecht London Library of Congress Control Number: 2012940251 © Springer Basel 2012 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respe ctive Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printedonacid-freepaper Springer Basel AG is part of Springer Science+Business Media (www.birkhauser-science.com) Preface The aim of this book is to give a self-contained introduction to the theory of infinite-dimensional systems theory and its applications to port-Hamiltonian sys- tems. Thefieldofinfinite-dimensionalsystemstheoryhasbecomeawell-established field within mathematics and systems theory. There are basically two approaches to infinite-dimensional linear systems theory: an abstract functional analytical approach and a PDE approach. There are excellent books dealing with infinite- dimensionallinearsystemstheory,suchas(inalphabeticalorder)Bensoussan,Da Prato, Delfour and Mitter [6], Curtain and Pritchard[9], Curtain and Zwart [10], Fattorini [17], Luo, Guo and Morgul [40], Lasiecka and Triggiani [34, 35], Lions [37], Lions and Magenes [38], Staffans [51], and Tucsnak and Weiss [54]. Many physical systems can be formulated using a Hamiltonian framework. Thisclasscontainsordinaryaswellaspartialdifferentialequations.Eachsystemin thisclasshasaHamiltonian,generallygivenbytheenergyfunction.Inthestudyof Hamiltoniansystems it is usually assumedthat the systemdoes notinteractwith its environment. However, for the purpose of control and for the interconnection of two or more Hamiltonian systems it is essential to take this interaction with the environment into account. This led to the class of port-Hamiltonian systems, see[56,57].TheHamiltonian/energyhasbeenusedtocontrolaport-Hamiltonian system,seee.g.[4, 7,21,43]. Forport-Hamiltoniansystemsdescribedbyordinary differentialequationsthisapproachisverysuccessful,seethereferencesmentioned above. Port-Hamiltonian systems described by partial differential equations is a subject of current research, see e.g. [14, 28, 33, 41]. In this book, we combine the abstract functional analytical approach with the more physical approach based on Hamiltonians. For a class of linear infinite- dimensional port-Hamiltonian systems we derive easily verifiable conditions for well-posedness and stability. The material of this book has been developed over a series of years. Javier Villegas[58]studiedinhisPhD-thesisaport-Hamiltonianapproachtodistributed parameter systems. We are grateful to Javier Villegas that we could include his resultsintothebook.Thefirstsetupofthebookwaswrittenforagraduatecourse oncontrolofdistributedparametersystemsfortheDutchInstituteofSystemsand Control(DISC)inthespringof2009whichwasattendedby25PhDstudents.This v vi Preface materialwasadaptedfortheCIMPA-UNESCO-MarrakechSchoolonControland Analysis for PDE in May 2009. In 2010-2011 we were the virtual lecturers of the 14thInternet Seminar on Infinite-dimensional Linear Systems Theory. More than 300 participants attended this virtual course and a wikipage was used to discuss the material and to post typos and comments. For this course we decided to add extra chapters on finite-dimensional systems theory, and to make the material in the later chapters more accessible. Weareindebtedtothehelpfrommanycolleaguesandfriends.Wearegrateful to the participants of the DISC-course, the CIMPA-UNESCO-MarrakeschSchool andthe14thInternetSeminarfortheirusefulcommentsandquestions.Largeparts of the manuscript have been read by our colleagues Mikael Kurula (Twente) and ChristianWyss(Wuppertal),whomademanyusefulcommentsforimprovements. We gratefully acknowledge the financial support of the German Research Foundation (DFG) in form of a Mercator visiting professorship for the second author. Birgit Jacob and Hans Zwart, November 2011 Wuppertal and Twente Contents List of Figures xi 1 Introduction 1 1.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 How to control a system? . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 State Space Representation 13 2.1 State space models . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Solutions of the state space models . . . . . . . . . . . . . . . . . . 19 2.3 Port-Hamiltonian systems . . . . . . . . . . . . . . . . . . . . . . . 21 2.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.5 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 Controllability of Finite-Dimensional Systems 27 3.1 Controllability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 Normal forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4 Stabilizability of Finite-Dimensional Systems 39 4.1 Stability and stabilizability . . . . . . . . . . . . . . . . . . . . . . 39 4.2 The pole placement problem. . . . . . . . . . . . . . . . . . . . . . 40 4.3 Characterizationof stabilizability . . . . . . . . . . . . . . . . . . . 44 4.4 Stabilization of port-Hamiltonian systems . . . . . . . . . . . . . . 47 4.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.6 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5 Strongly Continuous Semigroups 51 5.1 Strongly continuous semigroups . . . . . . . . . . . . . . . . . . . . 51 5.2 Infinitesimal generators . . . . . . . . . . . . . . . . . . . . . . . . 57 vii viii Contents 5.3 Abstract differential equations. . . . . . . . . . . . . . . . . . . . . 61 5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.5 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6 Contraction and Unitary Semigroups 65 6.1 Contraction semigroups . . . . . . . . . . . . . . . . . . . . . . . . 65 6.2 Groups and unitary groups . . . . . . . . . . . . . . . . . . . . . . 73 6.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.4 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7 Homogeneous Port-Hamiltonian Systems 79 7.1 Port-Hamiltonian systems . . . . . . . . . . . . . . . . . . . . . . . 79 7.2 Generation of contraction semigroups. . . . . . . . . . . . . . . . . 84 7.3 Technical lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.5 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . 96 8 Stability 97 8.1 Exponential stability . . . . . . . . . . . . . . . . . . . . . . . . . . 97 8.2 Spectral projection and invariant subspaces . . . . . . . . . . . . . 101 8.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 8.4 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . 109 9 Stability of Port-Hamiltonian Systems 111 9.1 Exponential stability of port-Hamiltonian systems . . . . . . . . . 111 9.2 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 9.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 9.4 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . 122 10 Inhomogeneous Abstract Differential Equations and Stabilization 123 10.1 The abstract inhomogeneous Cauchy problem . . . . . . . . . . . . 123 10.2 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 10.3 Bounded perturbations of C -semigroups. . . . . . . . . . . . . . . 132 0 10.4 Exponential stabilizability . . . . . . . . . . . . . . . . . . . . . . . 133 10.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 10.6 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . 140 11 Boundary Control Systems 143 11.1 Boundary control systems . . . . . . . . . . . . . . . . . . . . . . . 143 11.2 Outputs for boundary control systems . . . . . . . . . . . . . . . . 147 11.3 Port-Hamiltonian systems as boundary control systems . . . . . . 148 11.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 11.5 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Contents ix 12 Transfer Functions 157 12.1 Basic definition and properties . . . . . . . . . . . . . . . . . . . . 158 12.2 Transfer functions for port-Hamiltonian systems . . . . . . . . . . 163 12.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 12.4 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . 169 13 Well-posedness 171 13.1 Well-posedness for boundary control systems . . . . . . . . . . . . 171 13.2 Well-posedness for port-Hamiltonian systems . . . . . . . . . . . . 181 13.3 P H diagonal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 1 13.4 Proof of Theorem 13.2.2 . . . . . . . . . . . . . . . . . . . . . . . . 189 13.5 Well-posedness of the vibrating string . . . . . . . . . . . . . . . . 191 13.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 13.7 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . 195 A Integration and Hardy Spaces 197 A.1 Integration theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 A.2 The Hardy spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Bibliography 209 Index 215

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.