ebook img

Linear or Nonlinear Modeling for ENSO Dynamics? PDF

31 Pages·2017·4.77 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Linear or Nonlinear Modeling for ENSO Dynamics?

atmosphere Article Linear or Nonlinear Modeling for ENSO Dynamics? MarcoBianucci1,* , AntoniettaCapotondi2,RiccardoMannella3andSilviaMerlino1 1 ISMAR-CNR,19032LaSpezia, Italy;[email protected] 2 NOAA-ESRL,PhysicalSciencesDivision,UniversityofColorado,CIRES,Boulder,CO80305,USA; [email protected] 3 PhysicsDepartment,PisaUniversity,56127Pisa,Italy;[email protected] * Correspondence:[email protected] (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) Received:12September2018;Accepted:4November2018;Published:8November2018 (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Abstract: The observed ENSO statistics exhibits a non-Gaussian behavior, which is indicative of the presence of nonlinear processes. In this paper, we use the Recharge Oscillator Model (ROM), a largely used Low-Order Model (LOM) of ENSO, as well as methodologies borrowed from the field of statistical mechanics to identify which aspects of the system may give rise to nonlinearitiesthatareconsistentwiththeobservedENSOstatistics. Inparticular,weareinterestedin understandingwhetherthenonlinearitiesresideinthesystemdynamicsorinthefastatmospheric forcing. OurresultsindicatethatoneimportantdynamicalnonlinearityoftenintroducedintheROM cannotjustifyanon-Gaussiansystembehavior,whilethenonlinearityintheatmosphericforcingcan insteadproduceastatisticssimilartotheobserved. Theimplicationsofthenon-Gaussiancharacter ofENSOstatisticsforthefrequencyofextremeElNiñoeventsisthenexamined. Keywords: non-Hamiltonian complex systems; Fokker–Planck equation; transport coefficients; ElNiño-LaNiña;Lieevolution;projectionapproach 1. Non-Gaussian-NonlinearFeaturesoftheENSOStatistics It is well established that some aspects of the El Niño Southern Oscillation (ENSO) have a non-Gaussian statistics, a characteristic that is indicative of some underlying nonlinear process. For example, the plot of the frequency of the Niño 3 index (averaged Sea Surface Temperature (SST)anomaliesintheregion5◦ S–5◦ N,150◦ W–90◦ W)showsthatthelikelihoodoflargepositive SSTanomaliesisgreaterthanthatofnegativeanomalies(Figure1),indicatingthattheSSTanomalies achievedintheeasternequatorialPacificduringthematurephaseofanElNiñoarelargerthanthose occurringduringlaNiñaevents. AnotherasymmetryisthedurationofthetransitionfromoneENSO phasetotheother,witharapidtransitionfromElNiñotoLaNiña,butaslowertransitionfromLa NiñatoElNiño[1]. ThedurationofElNiñoeventstendstobeshorterthanthatofLaNiñaones, andtherangeofElNiñoflavorsislargerthanthatofLaNiña[2]. This non-Gaussian behavior is quantified by the positive skewness of the SST distribution: γ ∼ 0.7. Apositivekurtosisγ ∼ 1.1alsoclearlyindicatesthatextremeeventsaremorelikelyto 1 2 occurthanforanormaldistribution. The non-Gaussianity of the histogram arises from non-linear contributions in the equation of motion governing the system, and it is important to understand which nonlinearities play the mostrelevantroleintheENSOevolution. WeknowthatENSOistheresultofcomplexlarge-scale ocean-atmosphereinteractionsthatalsoincludenon-linearprocesses. Forinstance, AnandJin[3] proposed that the Nonlinear Dynamical Heating (NDH) in the ocean mixed layer is crucial for generating intense El Niño events, mainly due to the vertical nonlinear advection. Asymmetries inintensitycanalsoresultfromocean-atmospherecouplingprocesses(e.g.,[4])orfromthenonlinear Atmosphere2018,9,435;doi:10.3390/atmos9110435 www.mdpi.com/journal/atmosphere Atmosphere2018,9,435 2of31 response of the zonal wind stress to ENSO SST anomalies [5,6]. In general, the complexity of the ENSO,asformostofthelarge-scalephenomenaresultingfromtheocean-atmosphereinteraction, makes it challenging to understand the general key features of the statistics and dynamics of the events. Thus,tomimicthehighlycomplexnatureofENSOevents,asthediversityinspatialflavors andthe“non-normal”growthoffluctuations[7],largemultivariatelinearmodelswithmultivariate additivestochasticperturbationshavebeenexploited[8,9]. Here, wefocusinsteadonLowOrder Models(LOMs),i.e.,thesetofOrdinaryDifferentialEquations(ODE)forENSO,perturbedbyafast andchaoticforcing. Probably,amorerealisticmodelingofENSOshouldmergethesetwopictures (multidimensionalityandnonlinearities). Adeeperdiscussionabouttheeffectiveandrespectiveroles ofthedimensionandofthenonlinearitiesofanLOMtomodelthecomplexityofENSOgoesbeyond thetaskofthepresentwork. ThetropicalPacificcanbewelldescribedbyshallowwaterequationsdrivenatthesurfacebythe easterlytradewinds,thusallowingforadrasticsimplificationofthesystemdynamics. Simpleshallowwaterequationstogetherwiththeassumptionofalargetimescaleseparation betweentheENSOdynamicsandthetypicaldynamicsofatmosphericprocessesmakeitpossibleto reducethedescriptionofthedynamicsoftheENSO-relevantvariables,toarelativelysimpleLOM. ThisLOMcanbeseparatedinaslowpart,or“systemofinterest”,associatedwiththeslowevolution ofoceanicvariableslikeSSTandthermoclinedepth, andafast“restofthesystem”thatprimarily includesfastatmosphericprocesses,e.g.,theMadden–JulianOscillation(MJO),theWesterlyWind Bursts(WWBs),etc.,whichareconsideredimportantinforcingENSO.ENSOLOMsthathavebeen extensivelyconsideredintheliteratureincludetheRechargeOscillatorModel(ROM,e.g.,[10–17] amongmanyothers)andtheDelayedOscillator(DO,e.g.,[18,19]). Inthesemodels,ENSOeventsare triggeredbytheforcingprovidedbythefastatmosphericvariables,whichareusuallyrepresentedasa stochasticperturbationofthesystemofinterest. ThesimplifiedrepresentationofENSOintheLOMsprovidesasuitableframeworkforexamining theimpactofthesystemnonlinearitiesontheENSOstatistics. Inparticular,animportantquestion is whether the relevant nonlinearities reside in the interaction among the variables of the system ofinterest(dynamicalnonlinearities), assuggested, forexamplein[18], orareassociatedwiththe interactionofthesystemofinterestwiththeatmosphericfastforcing, asindicated, amongothers, by[6,20]. Thefastatmosphericforcingcanbeincludedintwoways: consideringthisforcingasstochastic orassumingadeterministicmotionwithinitialconditionsdistributedaccordingtosomedistribution (theGibbsideaofensemble). Theformerapproachisoftenusedintheoceanographicfield,wherethe dynamicsisdividedintoaslowandaveryfastandchaoticcomponent,andthefastpartisconsidered toberandom(usuallymodeledaswhitenoise)[21–25]. Thelatterapproachhasbeenlargelyused in the context of the foundation of statistical mechanics and thermodynamics and, more recently, alsointheoceanographicfieldbysomeoftheauthors[17,26,27]. Itaimsatstartingfrommorerealistic deterministicsystems(insteadofthestochasticones),andbyusingprojection-perturbationprocedures, itallowsmanagingalsothecasesinwhichthetimescaleseparationbetweenthedynamicsofthe partofinterestandthatoftherestofthesystemisnotsolarge: thisisthereasonwhyinthiswork, weshallfocusontheprojection-perturbationapproach,whichhasbeenappliedtothemulti-scale ENSOsystem. Bothapproacheshavetheirstrengthsandweaknesses,andalargeliteraturehasbeendevoted tojustifybothfromaformalandtheoreticalpointofview(forareviewaboutthefoundationofthe stochastic approach, see [28], and for the projection approach, see, e.g., [29–33]). It is far beyond the scope of the present work to discuss the foundation of these approaches. However, both aim atobtainingaPartialDifferentialEquation(PDE),ideallyaFokker–PlanckEquation(FPE),guiding the dynamics of the Probability Density Function (PDF) for the variables of the part of interest of thesystem. Atmosphere2018,9,435 3of31 TheFPEhasbeenhistoricallyusedtodescribethePDFofBrownian-likeparticles[34,35].Actually, theFPEhasbeenrecognizedasaveryusefultoolformodelingawidevarietyofstochasticphenomena arising in physics, chemistry, biology, finance, traffic flow, etc. [36]. The importance of the FPE cannot be overestimated, and in the classical books of stochastic methods, it is obtained from a truncatingKramers–MoyalexpansionoftheMarkovianmasterequation[37–39]. FromanFPE,itis possible to obtain statistical information about the quantity of interest. For example, the FPE is the major approach for determining, both analytically and numerically, important quantities like the First Passage Time (FPT; see for example [40]), in a variety of contexts ranging from civil and mechanicalengineering,physicalchemistry[41–43],disorderedsystems[44,45],neuroscience[46,47], biochemistry[48],biomedicine,mathematicalfinancing,imageprocessing,computerscience,etc. Moregenerally,thepossibilityofusinganFPEtomodelthestatisticalbehavioroftherelevant propertiesofthevariablesofinterestisoftencrucialbecausetheFPEistheonlynon-trivialpartial differentialequationthatinmanycasescanbeapproachedforasolutionwithanalyticaltools,and it looks like a Schrodinger equation [49]. In the present paper, we shall obtain a general FPE for theperturbedlinear/non-linearROMrepresentingtheENSOdynamics,andwewillcomparesome generalstatisticalfeaturesresultingfromtheFPE(suchasthestationaryPDF,therelaxationproperties andtheaveragetimingoftheevents)withobservations,toinferthespecificnatureofthenonlinearities oftheENSOmodeledbytheROM. NINO3 1950-2014 p (T) eq THREE-MONTH AVERAGE 0.5 0.4 0.3 0.2 0.1 -2.7 -1.8 -0.9 0 0.9 1.8 2.7 Figure1.Histogramofthefrequencyforthethree-monthaverageNiño3datafromNOAA[50].The dashedlineisthebestfitofthestationaryPDFfoundin[17](stronglyskewedandwithaheavytail), andsolidbluelineisanormaldistributionwiththesameaverageandvarianceoftheobservationdata. Thecontentsareorganizedasfollows: Section2isdevotedtoreviewinganddiscussingtheway theROMemergesasanLOMdescribingthedynamicsoftheanomaliesofthethermoclinedepthand oftheSSToftheequatorialPacificOcean. Thissectionshowsfrombothaphysicalandobservational pointofviewthattheROMcanprovideagoodrepresentationoftheENSOdynamics. InSection3, westartdiscussingthenonlinearities,andwepresentafirstresultofthepresentpaper: comparing observationswiththemodel,itishardtojustify/detectpossiblyinternaldynamicalnonlinearitiesfor theROM(nonlinearcouplingbetweentheROMvariables). InSection4,weintroduceandjustifythe nonlinearcouplingbetweentheunperturbedROMandthefast(butnotextremelyfast)forcing(mostly Atmosphere2018,9,435 4of31 bytheatmosphere). InSection5,startingfromtheperturbedROM,weexploitrecentresults[17,26,27] toobtaintheexplicitexpressionoftheFPEfortheROM.Thisismainlyareviewofpreviousresults,but itisdevelopedratherextensivelyheretomakethepresentworkself-contained. InSection6,weuse differentmethods(averagesoffirstmoments,covariancematrix,firstpassagetime,powerspectrum andexpectationoftheprocesstimeincrements)toinfer,fromdata,thevaluesoftheFPEcoefficients, comparingthemwiththetheoreticalones. Theaimistoassesswherethenonlinearitiesresponsiblefor thenon-GaussianfeaturesoftheENSOstatisticsreside. Section7isdevotedtodiscussingtheresults anddrawingconclusions. 2. TheDynamicsoftheComponentsoftheENSO:TheRechargeOscillatorModel The El Niño Southern Oscillation, also known as ENSO, is a periodic fluctuation of the SST (El Niño) and the sea level pressure (Southern Oscillation) across the equatorial Pacific Ocean. ThefluctuationsariseoveranormalconditionofstrongSSTgradientbetweentheeast(coldtongue) andthewest(warmpool)equatorialPacificOcean. ENSOisacomplicated,notyetfully-understood, coupledocean-atmospherephenomenoninwhichbasin-widechangesinseasurfacetemperatures, trade winds and atmospheric convection are intimately related. However, the particular ocean and atmosphere conditions that generate, and in some way also define, the El Niño/La Niña eventsallowtherepresentationofthekeyocean-atmosphericfeedbacksresponsibleforthiscomplex phenomenoninasimplifiedfashion. TheupperlayerofthetropicalPacificOcean,responsiblefortheenergyandmomentumexchange withtheatmosphere,isaverylongstripofwaterwithameridionalwidthofafewhundredkilometers, azonalextensionofabout10,000kmandanaveragedepthofabout120m,asdefinedbythedepth ofthethermocline. Thewaterinthisstripflowsoverthedeeperandcolderocean,fromtheSouth AmericancoaststothewarmAsiancoasts,mainlydrivenbytheeasterlytradewindsand“trapped” intheconvergenceoceanzone,aroundtheequatoriallatitude,ultimatelyduetotheCorioliseffect. ThismotionaccumulateswarmwaterinthewesternPacificOcean,andbecauseoftheclosed easternboundary,itforcesthecoldanddeepwatertoriseupintheeasternPacifictocompensatethe surfacewatermovingwestward. ThisprocessgeneratesthestrongSSTgradientbetweenthetwosides ofthebasin,which,innormalconditions,isinequilibriumwiththeeasterlytradewinds. DuringanElNiño(LaNiña)event,thisSSTgradientfromeasttowestisreduced(increased): we considerthatanElNiño(LaNiña)eventisoccurringwhentheSSTanomalyontheeastequatorial Pacificisgreater(lesser)than0.5(−0.5)degreesCelsiuswithrespecttotheaveragevalue. TheSST anomaliesarerelatedtothethermoclinedepthanomalies. Thus,thekeyquantitiesthatcharacterize ENSO in the equatorial Pacific Ocean are the SST anomaly (T ) in the eastern part of the domain, E usuallydescribedintermsoftheNiño3index(averageSSTinthearea5◦ S–5◦ N,150◦ W–90◦ W), andthezonalaverageoftheanomalyofthethermoclinedepth(h). ExploitingtheseverypeculiarphysicalconditionsoftheequatorialsurfacelayerofthePacific Oceanandfromtwo-box(eastandwestside,respectively),two-strip(equatorialandoffequatorial, respectively) approximations of the shallow water Navier–Stokes (NS) equations applied to the tropicalPacificOcean,JinobtainedthefollowingverysimplesystemoflinearequationsforthePacific equatorialthermoclinedepthanomaly[10,11]: h˙ = −rh −ατ (1a) W W s h −h = τ (1b) E W s whereτ isthezonally-integratedwindstressanomaly,thesubscriptW (E)meansthatthevariables s refertothewest(east)sideofthebasin,thefrictiontermrcollectivelyrepresentsthedampingofthe upperoceansystemthroughmixingandtheequatorialenergylosstotheboundarylayercurrentsat theeastandwestsidesoftheoceanbasin,anditissetintherange6.3month(cid:46)r−1(cid:46)8.0months[10,11]. Equation(1b)describesthezonaltiltofthethermocline,whichisinbalancewiththeequatorialzonal Atmosphere2018,9,435 5of31 windstressforcingoninterannualtimescales(e.g.,[10,51]). TheKelvinandRossbywaves,which accomplishtheadjustmentprocesses,arefilteredout,inthispicture,becausethetimescaleofthemode retained in thisapproximationis much longer than thebasin crossing time ofthese waves. Ifone assumes that for a given steady wind stress forcing, the zonal mean thermocline anomaly of this linearsystemisaboutzeroattheequilibriumstate,thatis,h +h =0(atequilibrium),thenfrom E W Equation(1),onefindsthatαshallbeabouthalfofr. Theworkin[10,11]providedaphysicalbasisforthesimplelinearrelationshipsinEquation(1), inthelongwave,two-stripapproximation. Noticethatifthewindstressτ wereafastforcingcompletelyindependentofthedynamicsof s thethermoclinedepthanomaly,Equation(1)wouldgiverisetoaverysimplerelaxationprocesswith relaxationtimegivenby1/r,which,ofcourse,isnotwhathappensinreality. Infact,asweshallsee below, thewinddynamicshasaslowpartthatisstronglycorrelatedwiththedynamicsof h viaa directlinearrelationshipwiththeotherENSOvariable: theSSTanomalyT . E AlinearODEforthethermodynamicsrelationshipbetweenthevariationoftheanomalousSST andthethermoclinedepthwasproposedin[10,11,52,53]andrelatedsubsequentworks: T˙ = −cT +γh +δ τ . (2) E E E S s,E where the first term on the right-hand side is a damping process with a collective damping rate c. ThesecondtermdescribestheinfluenceonT ofthethermoclinedisplacement,andδ istheEkman E S pumpingcoefficientoftheverticaladvectivefeedbackprocessesduetothewindstressaveragedover thedomain,whichactuallycanbeconsideredvanishing(see[10,52,53]fordetails): δ =0. S UsingEquation(1b),wecanrewriteEquation(2)as: T˙ = −cT +γh +γτ. (3) E E W s The above equation relates the dynamics of T to that of h . However, as we have already E W observed,alsothedynamicsofh ,giveninEquation(1),dependsonthevaluesoftheT variable. W E This dependence is due to the fact that the wind stress τ is strongly influenced by the zonal SST s gradient. Ineffect,inmostoftheworksontheROM[52,53]andontheDO[18],itisexplicitlyassumed thatthefollowinglinearrelationshipholdstrue: τ = bT +g(t), (4) s E where g(t) is a fast “chaotic” fluctuating function of time. In this work, we define as “chaotic” a unidimensionalfunctionoftime g(t) ifitsdynamicscanbeconsidered“almost”randomsoasto allowustosubstituteitsafelywithagenuinestochasticprocessortouseasecond-orderperturbation projectionapproach, ashereafterspecified. Inthefirstcase, weshouldexploitwell-knownworks aboutlimittheorems(e.g.,[54])andintroduceamorespecificchaotichypothesis(e.g.,[55,56])that, actually,hasbeenproventobesatisfiedonlybyhighlyidealizedmathematicalmodels. Inthesecond case,therequestsarelessstringent,becauseitisenoughthatforanyn ∈N,thecorrelationfunction (cid:104)g(t)g(t+t )...g(t+t )(cid:105)decays“quicklyenough”foreach1 ≤ k ≤ n,toavoiddivergencesinthe 1 n neglectedtermsobtainedwiththeperturbationprocedure[29,57–59]. Theextensiveuseofthequotes istostressthefactthat,asalreadystatedintheIntroduction,itisbeyondthefocusofthepresentwork todiscussthedynamicalfoundationofstochasticprocesses/statisticalmechanics. Forfurtheruse,we specifythatthesymbol(cid:104)...(cid:105)indicatesatimeaverage: (cid:104)a(cid:105) :=limT→∞(cid:82)0Ta(t)dt/T,butweshallexploit theergodicassumptionandtheGibbsideatoturnthetimeaveragesintoensembleaverages. Equation(4)impliesthattheslowcomponentofthewindstressandtheslowcomponentofT E areproportionaltoeachother. Figure1ofthepaper[60]supportsthisassumption,andwefurther validate this hypothesis by analyzing the NOAA data [61], as detailed in Appendix A, where the windstressanomalyτ isdividedintoslow(τ )andfast(τ )components. Theτ dataare s s,slow s,fast s,slow Atmosphere2018,9,435 6of31 obtainedfromtheone-yearaverageofτ data,whileτ ≡ τ −τ canbeidentifiedwithg(t) s s,fast s s,slow of(4). ExploitingEquation(4),fromEquations(1b)and(3),weobtainthewell-knownlinearROM: h˙ = −rh −αbT −αg(t) W W E T˙ = γh −λT +γg(t), (5) E W E withλ ≡ c−γb. Consideringthatαisquitesmallerthanγ[10,11],wedisregardtheforcingterm−αg(t)inthe firstequationofSystem(5),andfinally,weareledtothefollowingsimplifiedlinearROM: h˙ = −rh −αbT W W E T˙ = γh −λT +g(t) (6) E W E where we have included the constant γ in the definition of the fast part g(t) of the wind stress τ. s The result of Equation (6) is really remarkable because it is a very simple, but still informative, descriptionofacomplexlarge-scaleocean/atmosphereprocess. Wecanconsideritonthesamefooting astheOnsagerlinearregressionprinciple,chemicalreactionratemodels[43]andotherlinearresults of standard thermodynamics and statistical mechanics, which arise as large time and space scale phenomenafromanunderlyingcomplexfastandchaoticdynamics. 3. IsaPossibleInternalNonlinearityRelevant? Becauseofthelinearrelationshipbetweenh andT ofEquation(2),the“internal”dynamics(i.e., E E forg(t) =0)oftheROMofEquation(6)is,byconstruction,linear. However,alinearrelationshipin therealworldisalmostalwaysanapproximation;thusinthissection,weanalyzethepossibilitythata nonlinearcorrectioniseffectivelypresentintheinteractionbetweenthethermoclinedepthanomaly andthe SSTanomaly, and wetryto evaluateif thiscorrection cancontributeto thenon-Gaussian featuresoftheENSO.Actually,in[18],itisarguedthatanonlinearcubicrelationshipbetweenthe anomalous subsurface temperature T and the thermocline depth anomaly should be taken into sub account: T = ah −e∗h3 +O(h5), (7) sub E E E wherethevaluesforthecoefficientsaande∗ havebeenroughlyestimatedin[18]asa ∼0.14◦Cm−1 ande∗ ∼3×10−5◦Cm−3. Fromthisnonlinearrelation,asmallcubicterminh wouldenteralsoin E Equation(2)[18]. Giventheverysmallvalueoftheratioe∗/a,thecubictermshouldplaysomerole onlyforh ≥ ±2σ (σ isthestandarddeviationofh thatisalittleover10m[62]),reachingthesame E hE hE √ E valueofthelineartermforabouth ∼ a/e∗ = 36m(about3σ ). Usingthesearguments,in[63], E hE ithasbeenalreadyshownthatassuminganonlinearROMlinearlyinteractingwiththeatmosphere, weobtainanon-normalstationaryPDF.However,aswecanseeinFigure.5of[60],bothobservations and numerical results show that the relationship between T and h is far more linear than what sub wassuggestedin[18]. Infact,thisfigureshowsasmalldispersionofthedataaroundthelinearfit, forarangeofvaluesofh thatspansbeyond±4σ . Thus,wehaveevidence,fromobservations,that E hE thenonlinearcorrectiontothelinearROMisquitesmallerthatthe(alreadysmall)valueestimated in[18]. However,toevaluatetherelevanceofthissmallnonlineartermfortheENSOstatistics,wealso havetoaccountforthebehaviorofthePDFforlargevaluesofh. ToestimatethePDFincludingthe nonlinearcorrectionintheinteractionbetweenthethermoclinedepthanomalyandtheSSTanomaly, weconsiderthefollowingnonlinearROM: h˙ = −rh −αbT W W E T˙ = γU(cid:48)(h )−λT +g(t), (8) E W E Atmosphere2018,9,435 7of31 inwhich U(h ) = h2 /2+κh4 /4+O(h6 ) (9) W W W W where for a generic function f(x), we have defined f(cid:48)(x) := df(x)/dx and κ is a parameter that, accordingtotheaboveresults,ismuchsmallerthanthevalueoftheratioe∗/a,i.e.,κ <<10−4m−2.The stationaryPDFthatcanbederivedfromEquation(8),consideringg(t)asanadditivefastfluctuating forcing,isasfollows. Wechangevariables: v ≡ −rh −αbT ,x = h ,andEquation(8)becomes: W E W x˙ = v v˙ = −αbγU(cid:48)(x)−λrx−(r+λ)v−αbg(t). (10) Ifg(t)isassumedtobeawhitenoisewithacorrelationfunction(cid:104)g(0)g(t)(cid:105) =2dδ(t),Equation(10) describesthedynamicsofaparticlewithcoordinatex,velocityv,inan“almost”harmonicpotential givenby: x2 x2 x4 V(x) = αbγU(x)+λr (cid:39) (λr+αbγ) +αbγκ (11) 2 2 4 andinteractingwithathermalbathwithfrictionr+λand“temperature”Θ = α2b2d/(r+λ). Itis wellknownthatthestationaryPDFforsuchasystemisthe“canonical”one: ρ (x,v) = Ze−H(Θx,v), (12) s where Z isthenormalizationconstantand H(x,v) ≡ V(x)+ v2 istheHamiltonian. Thus, Θisthe 2 varianceofthe“velocity”variablev: Θ = (cid:104)v2(cid:105) ≡ σ2. Asforthe x (= h )variable,wenoticethat, s v W giventhesmallvalueoftheκparameter,thenon-harmonictermαbγκx4/4inthepotentialV(x)of Equation(11)givesanegligiblecontributiontothevariance;thus,wealsohaveΘ (cid:39) (λr+αbγ)(cid:104)x2(cid:105) := s (λr+αbγ)σ2. Therefore,thestationaryPDFofEquation(12)isverywellapproximatedbyaGaussian x functionuntilthenonlineartermofthepotentialαbγκx4 entersintoplay,but,asalreadynoted,this 4 happens when x = h far exceeds at least two standard deviations, i.e., where the non-Gaussian W featurecouldnotreallyemergebecauseoftheextremelylowvalueofthePDFofEquation(12). Thus, weareledtotheconclusionthatthepossiblynonlinearinteractionbetweentheinternalROMvariables cannotinherentlybethecauseoftheobservednon-GaussianpropertiesoftheENSOstatistics. Noticethatifweconsidertheexternalforcingg(t)asacorrelatednoise(i.e.,notwhite)orasa weakdeterministicchaoticperturbationwithafinitetimescale(namely,withcorrelationfunction thatdecaysinafinitetime),usingaZwanzig-likeprojectionapproachintheperturbationversion of[64–66],weobtainastationaryPDFfortheROMvariablesthatissimilartotheoneinEquation(12), apartfromsomesmallchangesintheparameterΘandinthecoefficientsofthepotentialV(x). Thus, alsointhesenon-Markoviancases,thesameargumentofthepreviouswhitenoisecaseapplies: the non-GaussianfeaturesofthePDFwouldbenegligibleandnotaspronouncedasobserved. Sofar,wehaveshownthatanalyzingtherelationsbetweenthedynamicsofh andT ,itishard W E tofindnonlinearitiesstrongenoughtojustifythenon-GaussianbehavioroftheENSOstatistics. Thus, fromnowon, weshallassumethatthenon-harmonicterminthepotentialU(h ) ofEquation(9) W can be neglected. Namely, we return to the linear ROM of Equation (6) and attempt to justify the observednonlinearitiesfocusingontheinteractionoftheslowcomponentsoftheROMofEquation(6) withg(t). Itisworthwhiletoremarkthatarecentstudy[67]hashighlightedtheimportanceofthenonlinear advectivetermsintheupper-oceantemperatureequationsasasourceofENSOnonlinearitiesand the resulting non-Gaussianity of eastern Pacific SST anomalies. These nonlinear advective terms, whichhavebeencollectivelytermedNonlinearDynamicalHeating(NDH),areprimarilycontrolled by the anomalies of the zonal advection term (u(cid:48)∂ T(cid:48); see [67] for the nomenclature). However, x theasymmetricinfluenceofthenonlinearzonaladvectiontermuponwarmandcoldENSOevents Atmosphere2018,9,435 8of31 may be linked to the distinctive multiplicative character of the anomalous wind forcing of ENSO, whichisstrongerforpositivethannegativeanomalies. Nonlinearitiesinthesurfaceforcingandtheir influenceontheSSTstatisticsaredescribedinthenextsection. Beforedoingthat,however,wesimplifyEquation(6)alittleinthefollowingway: h˙ = −ωT E T˙ = ωh−λT +g(t), (13) E E whereh ≡ (h +h )/2isthezonally-averagedthermoclinedepthanomaly(directlyrelatedtothe W E anomalousheataccumulatedintheEquatorialPacificOcean),achoicejustifiedbytheargumentsand resultsof[12],shortlysummarizedhereafter. First,Equation(1b)impliesthatthetiltofthethermocline reactsalmostinstantaneouslytowindstress, butitismorerealistictoassumethattheadjustment of the thermocline depth takes a finite time, approximately the time it takes for a Kelvin wave to propagatefromthewesterncentralPacifictotheeast. Thus,Equation(1b)shouldbereplacedby: h˙ = −γ (h −h −τ ). E h E W s Second, repeating the same steps that led us from Equation (1b) to Equation (6), we get an unperturbedROMgivenbythreedifferentialequationsthatbetterrepresenttheENSOdynamics, leadingtoabetteragreementamongtheparameterofthemodelandobservations. Finally,studying indetailthefeatureofthislinearthree-degreesoffreedomsystem,weseethatoneeigenstatehasafast decaytime(shorterthanonemonth);thus,thedynamicsisattractedtowardatwo-dimensionalslow manifold,wellrepresentedbythereducedROMofEquation(13). Suitablevaluesforωandλ(the“friction”coefficient)canbeobtainedbyusingphenomenological considerationswhenderivingtheROMfrombuildingblockequationsand/ordirectlyfromafitto observations(see[12]). Intheliterature,wefinddifferentvaluesthatrangefrom2π/48month−1–2π /36month−1forωandfrom1/12month−1–1/6month−1forλ. Weshallseeinthefollowingthatwe canshrinktheseranges. 4. TheMultiplicativeNatureoftheForcing In some recent works, it has been shown that to account for the instability of the dynamics, theskewnessandthetailoftheobservedstationaryPDFoftheENSO,theperturbationforcingg(t)of theROMcannotbesimplyadditive,butamultiplicativeterm,directlycorrelatedwiththeadditive one,shouldalsobeconsidered[14,15,17],leadingtoaperturbationoftheform: g(t) = (cid:101)(1+βT )ξ(t), (14) E where ξ(t) is a fast chaotic fluctuating term and (cid:101) is a parameter that controls the strength of the interaction. ManyfactssupportthehypothesisgivenbyEquation(14): • themultiplicativenatureoftheENSOforcingprovidedbytheMadden–JulianOscillation(MJO) anditshigherfrequencytail([68,69]andthereferencestherein); • multiplicative fast forcings typically emerge from the general perturbation approaches to large-scaleoceandynamics[70,71]; • consideringthenonlinearnatureoftheheatbudgetequationforthesurfacemixedlayer[72],we getmultiplicativefastfluctuationsinboththenetsurface/subsurfaceheatfluxandtheadvective contributions[16,67,70,71]. Concerning the last point, we again notice that the equatorial Pacific zonal subsurface NDH u(cid:48)∂ T(cid:48),whichplaysaroleintheasymmetryoftheElNiño-LaNiñaevents[67],maybelinkedtothe x multiplicativeterm(cid:101)βT ξ(t)ofEquation(14),assumingthatξ(t)andT aredirectlyrelatedtou(cid:48) and E E ∂ T(cid:48),respectively. x Thus,insertingEquation(14)intotheROMofEquation(13),weget: Atmosphere2018,9,435 9of31 h˙ = −ωT E T˙ = ωh−λT +(cid:101)(1+βT )ξ(t), (15) E E E thatisthefinalmodelweshalltakeintoaccounthereafter. When ξ(t) is a white noise, the term (1 + βT )ξ(t) is often named E Correlated-Additive-Multiplicative (CAM) noise [21–23], but we shall extend this notation alsotodeterministic(i.e.,notstochastic)processes,sayingthat (1+βT )ξ(t)isaCAMforcing. In E Section6,startingfromobservations,weshalluseastatisticalinferencemethodfordiffusionprocesses withnonlineardrifttoestimatetheeffectivecontributionoftheCAMforcingwithrespecttoamore simpleadditivefastforcing. Ingeneral, itisreasonablethatatleastapartoftheadditiveforcingshouldnotbecorrelated withthemultiplicativeone,i.e.,thattherearedifferentindependentfastchaoticforcingsthatcanbe collectedasanindependentadditivecontribution,uncorrelatedtothepreviousone,consideredabove: g(t) = f(t)+(1+βT )ξ(t), (16) E where f(t) is uncorrelated with ξ(t). However, for the sake of simplicity, we do not consider this possibilityhere. ThismoregeneralROMwillbeexaminedinasubsequentpaper. We want to stress again that we do not make the assumption that the forcing term ξ(t) of Equation (15) has a stochastic nature. ξ(t) is a deterministic “chaotic” forcing, and statistics is introducedbyusingtheGibbsconceptofensemble(ourPDF). 5. TheFokker–PlanckEquationGuidingtheStatisticsoftheROM The ROM of Equation (15) must be validated by observations of the ENSO, namely we must usesomedataanalysisapproachtoinferthevaluesofthecoefficientsoftheROMofEquation(15). Duetothemultiplicativecharacteroftheperturbation,thesystemisnotlinear;thus,strictlyspeaking, wellconsolidatedapproachesbasedontheGaussianpropertiesofthedatadispersion,suchasthe LinearInversionModel(LIM),cannotbeusedinthiscase. However,aswillbeshowninthenext section, if we observe only, or if we are interested only in the first (the mean) and the second (the variance) moments, then the system of Equation (15) looks to be linear, with eigenvalues that are weaklyrenormalizedbytheβparameter.Ofcourse,replacingthenonlinearROMofEquation(15)with alinearone,alltheinformationconcerninglargedeviationsfromtheaverageswillbelost. Because weareinterestedinevaluatingtheroleofthenonlinearitiesintheENSOdynamics,modeledbythe perturbedROM,wewouldneedanFPEforthePDFoftheSSTanomaliesthatfullyretainsthenonlinear natureoftheinteractionbetweentheENSOvariablesofinterest(h,T )andthecollectivevariable E ξ(t)ofEquation(15). Inthisway,infact,acomparisonbetweentheFPEpredictionsandobservations shouldpossiblyvalidatethemodelandallowonetoestimatetherelativeweightofthemultiplicative perturbation.Inthissection,webrieflyrecallandusesomeoftheresultsof[17,26,27,32,33]tointroduce anexplicitFPEforthePDFoftheROMsystem. Tobereallyinapositiontodistinguish,inthemodelofEquation(15),betweenthedynamicsof theENSOvariables(h,T )andthatoftheperturbationξ(t),itisimplicitlyassumedthatthereisatime E scaleseparationand/oraweakinteractionbetweenthesetwosubsystems.Itisafactthatthedynamics of the atmosphere forcing triggering the ENSO, which is represented by the term proportional to the(cid:101)parameterinEquation(15),hasatimescalethatisshorterthanthetimescaleoftheaverage dynamicsoftheENSO.Thus,wecansaythattheautocorrelationtimeτ ofξ(t)issmallerthanthe √ periodandrelaxationtimeoftheunperturbedROM,givenby1/ ω2−λ2/4and2/λ,respectively. Noticethat“shorter”doesnotnecessarilymean“extremelyshorter”,butifthisisthecase,undersome conditionsaboutthefeaturesofthedynamicsoftheξ variable,wecanapproximateξ(t)byawhite noise[28,55,56,73],with(cid:104)ξ(0)ξ(t)(cid:105) =2(cid:104)ξ2(cid:105)τδ(t). Itisawell-knownresultthatifξ(t)isreplacedwith awhitenoise,Equation(15)becomesequivalenttothefollowingFokker–PlanckEquation(FPE)for theProbabilityDensityFunction(PDF)σ(h,T;t)oftheROMvariables(weshallusetheStratonovich Atmosphere2018,9,435 10of31 integrationruleforwhitenoisedynamics[74];hereafter,forthesakeofsimplicity,weshalluseTfor T and∂ ≡ ∂/∂t,∂ ≡ ∂/∂hand∂ ≡ ∂/∂T): E t h T (cid:8) ∂ σ(h,T;t) = ω∂ T−ω∂ h+λ ∂ T+Dβ∂ (1+βT) t h T T T +∂ D(1+βT)2∂ (cid:9)σ(h,T;t) T T (cid:8) = ω∂ T−ω∂ h+λ ∂ T−Dβ∂ (1+βT) h T T T +∂2 D(1+βT)2(cid:9)σ(h,T;t) (17) T whereD ≡ (cid:101)2(cid:104)ξ2(cid:105)τisthe“standard”diffusioncoefficient. InthecasewherethetimescaleseparationbetweentheunperturbedROMandthefastforcing isnotsoextreme,aswehavealreadystressed,wecannotapproximatethedeterministicforcingξ(t) with a white noise, and we have to work with ensembles (i.e., PDF) for which the time evolution is guided by the Liouvillian corresponding to the equation of motion of the perturbed ROM of Equation(15). StartingfromtheLiouvilleequation,assumingweakperturbationoftheROM(small (cid:101)values)andusingaprojectionperturbationapproach,itisthuspossibletoderiveaneffectiveFPE thatwellapproximatesthedynamicsofthePDF[17](seealsoAppendixBforashortsummaryofthe projectionprocedure,adaptedtothepresentcaseofEquation(15)): (cid:8) ∂ σ(h,T;t) = ω∂ T−ω∂ h t h T +(λ+Dβ2)∂ T+Dβ∂ T T (cid:9) +∂ A(h,T)∂ +∂ B(h,T)∂ σ(h,T;t), (18) T T T h where the decay time τ of the auto-correlation function of ξ is defined in the following way: if (cid:82)∞ ϕ(t) ≡ (cid:104)ξ(t)ξ(0)(cid:105)/(cid:104)ξ2(cid:105)isthenormalizedautocorrelationfunctionofξ,thenτ ≡ ϕ(t)dt.Asin[17], 0 thediffusionfunctions A(h,T)andB(h,T)aresecondorderpolynomialsoftheROMvariables(h,T): A(h,T) =A +βA h+βA T 0 1 2 +β2A hT+β2A T2 3 4 B(h,T) =B +βB h+βB T 0 1 2 +β2B hT+β2B T2. (19) 3 4 AsisshownintheAppendixB,theA andB coefficientsareproportionalto(cid:101)2,donotdependon i i theβparameterandarelinearcombinationsoftheFouriertransformofthefunction ϕ(t),evaluated √ at the frequencies 2Ω and Ω−iλ/2, where Ω ≡ ω2−λ2/4 is the effective frequency of the unperturbedROM. FromtheFPE,itispossibletogetalltherelevantstatisticalinformationabouttheENSOvariables, includingtheTmomentsandthestationaryPDF.Fromaformalpointofview,theFPEinEquation(18) isasecondorderPartialDifferentialEquation(PDE)withthediscriminant[75]equaltoB(h,T)2/2≥0; thus, for non-vanishing B(h,T), this PDE is hyperbolic, and not a parabolic one like the FPE of Equation(17)derivedfroma“true”stochasticMarkovianprocess. ThediffusioncoefficientB(h,T)is asignatureofthefinite(i.e.,“noninfinite”)timescaleseparationbetweenthedynamicsofthesystem ofinterestandthatofthebooster. 6. InferenceoftheStatisticalFeaturesoftheROMfromObservations 6.1. LinearEquationofMotionfortheFirstTwoMomentsoftheROMandtheWhiteNoiseApproximation UsingtheFPEofEquations(18)and(19),itiseasytoobtainasetofclosedequationsofmotion forthefirstn-thmomentsoftheROM.Forthemomentsuptothesecondones,weget:

Description:
between the ENSO dynamics and the typical dynamics of atmospheric the dynamics of the Probability Density Function (PDF) for the variables of the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.