ebook img

Linear or Non Linear Modeling for ENSO Dynamics? PDF

30 Pages·2017·4.55 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Linear or Non Linear Modeling for ENSO Dynamics?

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 September 2018 doi:10.20944/preprints201809.0239.v1 Article Linear or Non Linear Modeling for ENSO Dynamics? MarcoBianucci1,AntoniettaCapotondi2,RiccardoMannella3andSilviaMerlino1 1 ISMAR-CNR,LaSpezia(IT);[email protected] 2 NOAA,Boulder,ColoradoXXX 3 PhysicsDepartment,PisaUniversity,Pisa(IT)2 * Correspondence:[email protected] Abstract: Observed ENSO statistics exhibits a non-gaussian behavior, which is indicative of the presence of nonlinear processes. In this paper we use the Recharge Oscillator model (ROM), a largelyusedLow-OrderModel(LOM)ofENSO,aswellasmethodologiesborrowedfromthefield ofstatisticalmechanicstoidentifywhichaspectsofthesystemmaygiverisetononlinearitiesthat areconsistentwiththeobservedENSOstatistics. Inparticular,weareinterestedinunderstanding whetherthenonlinearitiesresideinthesystemdynamicsorinthefastatmosphericforcing. Our results indicate that one important dynamical nonlinearity often introduced in the ROM cannot justifyanon-gaussiansystembehavior,whilethenonlinearityintheatmosphericforcingcaninstead produceastatisticssimilartotheobserved. Theimplicationsofthenon-GaussiancharacterofENSO statisticsforthefrequencyofextremeElNinoeventsisthenexamined. Keywords: Non Hamiltonian complex systems; Fokker Planck Equation; transport coefficients; ElNiño-LaNiña;Lieevolution;projectionapproach 1. NonGaussian-NonLinearfeaturesoftheENSOstatistics It is well established that some aspects of the El Niño Southern Oscillation (ENSO) have a non-Gaussianstatistics,acharacteristicthatisindicativeofsomeunderlyingnonlinearprocess. The histogramofthefrequencyoftheNiño3index(averagedseasurfacetemperature(SST)anomaliesin theregion5◦S-5◦N,150◦W-90◦W)showsthatthelikelihoodoflargepositiveSSTanomaliesisgreater than that of negative anomalies (Fig. 1). This non-Gaussian behavior is quantified by the positive skewness: γ ∼0.7. Thehistogramalsoshowsapositivekurtosisγ ∼1.1thatclearlyindicatesthat 1 2 extremeeventsaremorelikelytooccurthanforanormaldistribution. As previously mentioned, the non-Gaussianity of the histogram arises from non-linear contributions in the equation of motion governing the system, and it is important to understand whichnonlinearitiesplaythemostrelevantroleintheENSOevolution. WeknowthatENSOisthe resultofcomplexlarge-scaleocean-atmosphereinteractionsthatalsoincludenon-linearprocesses, someofwhicharisingfromtheocean-atmospherecouplingitself. However,thetimescaleseparation betweentheENSOdynamicsandthetypicaldynamicsofatmosphericprocessesmakesitpossible to reduce the ENSO system to a relatively simple Low Order Model (LOM), i.e. a set of Ordinary Differential Equations (ODE). This LOM can be separated in a slow part, or “system of interest”, associatedwiththeslowevolutionofoceanicvariableslikeSSTandthermoclinedepth,andafast“rest ofthesystem”thatprimarilyincludesfastatmosphericprocesses,e.g. theMadden-JulianOscillation (MJO), the Westerly Wind Bursts (WWBs), etc., which are considered important in forcing ENSO. ENSOLOMsthathavebeenextensivelyconsideredintheliteratureincludetheRechargeOscillator Model(ROM,[1–8]amongmanyothers)andtheDelayedOscillator(DO,e.g.,[9,10]). Inthesemodels ENSOeventsaretriggeredbytheforcingprovidedbythefastatmosphericvariableswhichareusually representedasastochasticperturbationofthesystemofinterest. ThesimplifiedrepresentationofENSOintheLOMsprovidesasuitableframeworkforexamining theimpactofthesystemnonlinearitiesontheENSOstatistics. Inparticular,animportantquestion © 2018 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 September 2018 doi:10.20944/preprints201809.0239.v1 2of30 iswhethertherelevantnonlinearitiesresideintheinteractionamongthevariablesofthesystemof interest(dynamicalnonlinearities),orareassociatedwiththeinteractionofthesystemofinterestwith theatmosphericfastforcing. Toaddressthisissueitisworthwhiletospecifybetterinwhichwaystatisticsenterinouranalysis of a deterministic system, such as ENSO. In general statistics can enter the model in two ways: consideringsomeforcingcomponentasstochastic(forexamplethefastpartofthewindstressthat perturbstheoceandynamics),orassumingadeterministicmotionwithinitialconditionsdistributed accordingtosomedistribution(theGibbsideaofensemble). Theformerapproachisoftenusedinthe oceanographicfield,wherethedynamicsisdividedintoaslowandafastcomponent,andthefast partisconsideredtoberandom(usuallymodeledaswhitenoise)[11–15]. Theintroductionofwhite noisetomimicthedynamicsoffastchaoticperturbingforces,reducingthedeterministicdynamics toaMarkovstochasticprocessis,ofcourse,verycommoninstatisticalmechanics. Thisprocedure hasbeenformallyjustifiedbyoldwellknownworksaboutlimittheorems(e.g.[16])andalsobymore recentones,introducingsomespecificchaotichypothesis(e.g.[17,18]). Actually,themathematical theoremsprovedwereforveryspecialmathematicalmodelsystems,likeverychaoticsystemswhich, fromaphysicalpointofview,lookedoftenhighlyidealizedtoberelevantforphysics. Inanycase, onceassumedtoworkinastochasticframework,wellknownclassicaltheoremshelpustogeneralize thisresult,showingthataverybroadclassofstochasticdynamicalsystemsconverge(inaweaksense) todiffusionMarkovprocesses[19]. Morerecentworkshaveformallyshownthat,insomespecial cases,alsoaprocesswithafinitecorrelationtimecanbereducedtoaMarkovstochasticprocessby dividingthedynamicsintoMarkovpartitions(forareview,see,e.g.,thebookofDorfman[20]). Inpracticalcases,however,itisnotusuallypossibletoprovethatthesystemweareinterestedin satisfiesallthehypothesisrequestedbytheabovetheorems. Forexample,whenthefastperturbation hasamultiplicativecharacterand/ortheperturbedsystemisnonlinear,itisnotformallyclearhowto proceedtoobtainthisMarkovpartition. ItisobviousthatthisreductiontoasimpleMarkovprocessof non-lineardynamicalsystemsperturbedbyafastchaoticperturbationthathasafinitetimescaleis notingeneralpossible. In oceanography, and specifically in ENSO research, the a priori assumption of infinite time scaleseparationbetweenthedynamicsoftheoceanandtheatmospherevariablesmaynotalwaysbe justified. Thus,inthisstudyweshallnotconsiderstochasticmodelsforENSObutjustdeterministic onesandweintroduceastatisticaldescriptionofourdeterministicprocessbyusingtheGibbsidea of ensemble. Therefore, we assume that the state of the system is defined, at any given time, by a ProbabilityDensityFunction(PDF)onthewholephasespacespannedbythevariablesofthesystem. 2. ThedynamicsofthecomponentsoftheENSO The El Niño Southern Oscillation, also known as ENSO, is a periodic fluctuation of the SST (ElNiño)andtheseelevelpressure(SouthernOscillation)acrosstheequatorialPacificocean. The fluctuationsariseoveranormalconditionofstrongSSTgradientbetweentheeast(coldtongue)and the west (warm pool) equatorial Pacific ocean. ENSO is a complicated, not yet fully understood, coupledocean-atmospherephenomenoninwhichbasin-widechangesinseasurfacetemperatures, tradewinds,andatmosphericconvectionareintimatelyrelated. However,theparticularoceanand atmosphereconditionsthatgenerate,andinsomewayalsodefine,theElNiño/LaNiñaevents,allow therepresentationofthekeyocean-atmosphericfeedbacksresponsibleforthiscomplexphenomenon inasimplifiedfashion. TheupperlayerofthetropicalPacificocean,responsiblefortheenergyandmomentumexchange withtheatmosphere,isaverylongstripofwaterwithameridionalwidthofafewhundredkilometers, azonalextensionofabout10.000km,andanaveragedepthofabout120m,asdefinedbythedepth ofthethermocline. Thewaterinthisstripflowsoverthedeeperandcolderocean,fromthesouth AmericacoaststothewarmAsiancoasts,mainlydrivenbytheeasterlytrade-windsand"trapped"in theconvergenceoceanzone,aroundtheequatoriallatitude,ultimatelyduetotheCorioliseffect. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 September 2018 doi:10.20944/preprints201809.0239.v1 3of30 This motion accumulates warm water in the western Pacific ocean and because of the closed easternboundaryitforcesthecoldanddeepwatertoriseupintheeasternPacifictocompensatethe surfacewatermovingwestward. ThisprocessgeneratesthestrongSSTgradientbetweenthetwosides ofthebasin,which,innormalconditions,isinequilibriumwiththeeasterlytradewinds. DuringanElNiño(LaNiña)eventthisSSTgradientfromeasttowestisreduced(increased): weconsiderthataElNiño(LaNiña)eventisoccurringwhentheSSTanomalyontheeastequatorial pacificisgreater(lesser)than0.5(-0.5)degreesCelsiuswithrespecttotheaveragevalue. TheSST anomaliesarerelatedtothethermoclinedepthanomalies. Thusthekeyquantitiesthatcharacterize ENSOintheequatorialPacificoceanaretheSSTanomaly(T)intheeasternpartofthedomain,usually describedintermsoftheNiño3index(averageSSTinthearea5N-5S,150W-90W),andthezonal averageoftheanomalyofthethermoclinedepth(h). ExploitingtheseverypeculiarphysicalconditionsoftheequatorialsurfacelayerofthePacific oceanandfromatwo-boxes(eastandwestside,respectively),twostrips(equatorialandoffequatorial, respectively)approximationsoftheshallowwaterNavierStokes(NS)equationsappliedtothetropical Pacificocean,JinobtainedthefollowingverysimplesystemoflinearequationsforthePacificEquatorial thermoclinedepthanomaly[1,2]: h˙ = −rh −ατ (1a) W W s h −h = τ (1b) E W s whereτ isthezonallyintegratedwindstressanomaly,thesubscriptW (E)meansthatthevariables s refertothewest(east)sideofthebasin,thefrictiontermrcollectivelyrepresentsthedampingofthe upperoceansystemthroughmixingandtheequatorialenergylosstotheboundarylayercurrentsat theeastandwestsidesoftheoceanbasinanditissetintherange6.3month(cid:46)r−1 (cid:46)8.0month[1,2]. Eq.(1b)describesthezonaltiltofthethermoclinewhichisinbalancewiththeequatorialzonalwind stressforcingoninterannualtimescales(e.g.[1,21]). TheKelvinandRossbywaves,thataccomplish theadjustmentprocesses,arefilteredout,inthispicture,becausethetimescaleofthemoderetainedin thisapproximationismuchlongerthanthebasincrossingtimeoftheseswaves. Ifoneassumesthat foragivensteadywindstressforcing,thezonalmeanthermoclineanomalyofthislinearsystemis aboutzeroattheequilibriumstate,thatis,h +h =0(atequilibrium),thenfromEq.(1)onefinds E W thatαshallbeabouthalfofr. Refs.[1,2]provideaphysicalbasisforthesimplelinearrelationshipsinEq.(1),inthelongwave, twostripapproximation. Noticethatifthewindstressτ wasafastforcingcompletelyindependentofthedynamicsofthe s thermoclinedepthanomaly,Eq.(1)wouldgiverisetoaverysimplerelaxationprocesswithrelaxation timegivenby1/r,that,ofcourse,isnotwhathappensinreality. Infact,asweshallseebelow,the winddynamicshasaslowpartthatisstronglycorrelatedwiththedynamicsofhviaadirectlinear relationshipwiththeotherENSOvariable: theSSTanomalyT. AlinearODEforthethermodynamicsrelationshipbetweenthevariationoftheanomalousSST andthethermoclinedepthisproposedinRefs.[1,2,22,23]andrelatedsubsequentworks: T˙ = −cT +γh +δ τ . (2) E E E S s,E where the first term on the right-hand side is a damping process with a collective damping rate c. ThesecondtermdescribestheinfluenceonT ofthethermoclinedisplacementandδ istheEkman E S pumpingcoefficientoftheverticaladvectivefeedbackprocessesduetothewindstressaveragedover thedomain,thatactuallycanbeconsideredvanishing(see[1,22,23]fordetails): δ =0. S UsingEq.(1b)wecanrewriteEq.(2)as: T˙ = −cT +γh +γτ. (3) E E W s Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 September 2018 doi:10.20944/preprints201809.0239.v1 4of30 TheaboveequationrelatesthedynamicsofT tothatofh . However,aswehavealreadyobserved, E W alsothedynamicsofh ,giveninEq.(1),dependsonthevaluesoftheT variable. Thisdependenceis W E duetothefactthatthewindstressτ isstronglyinfluencedbythezonalSSTgradient. Ineffect,in s mostoftheworksontheROM[22,23]andontheDO[9]itisexplicitlyassumedthatthefollowing linearrelationshipholdstrue: τ = bT +g(t), (4) s E where g(t) is a fast chaotic fluctuating function of time. The above equation means that the slow componentofthewindstressandtheslowcomponentof T areproportionaltoeachother. Fig.1 E ofthepaper[24]supportsthisassumption,andwefurthervalidatethishypothesisbyanalyzingthe NOAAdata[25]asdetailedinAppendixA,wherethewindstressanomalyτ isdividedinaslow s (τ )andfast(τ )components. Theτ dataareobtainedfromtheoneyearaverageofτ data, s,slow s,fast s,slow s whileτ ≡ τ −τ canbeidentifiedwithg(t)of(4). s,fast s s,slow ExploitingEq.(4),fromEqs.(1b)and(3)weobtainthewell-knownlinearROM: h˙ = −rh −αbT −αg(t) W W E T˙ = γh −λT +γg(t), (5) E W E withλ ≡ c−γb. Consideringthatαisquitesmallerthanγ[1,2],wecandisregardtheforcingterm−αg(t)inthe firstequationofsystem(5)andfinally,weareledtothefollowingsimplifiedlinearROM: h˙ = −rh −αbT W W E T˙ = γh −λT +g(t) (6) E W E wherewehaveincludedtheconstantγinthedefinitionofthefastpartg(t)ofthewindstressτ. The s resultofEq.(6)isreallyremarkablebecauseitisaverysimple,butstillinformative,descriptionofa complexlargescaleocean/atmosphereprocess. WecanconsideritonthesamefootingastheOnsager linear regression principle, chemical reaction rate models [26] and other linear results of standard thermodynamicsandstatisticalmechanics,thatariseaslargetimeandspacescalephenomenafroma underlyingcomplexfastandchaoticdynamics. Noticethatthe“internal”dynamics(i.e.,forg(t) =0)oftheROMofEq.(6)islinear,andthisis duetothelinearrelationshipbetweenh andT ofEq.(2).However,nonlinearitiesmaybepresentand E E theirinfluenceshouldbeconsidered. Infact,inRef.[9]itisarguedthatanonlinearcubicrelationship betweentheanomaloussubsurfacetemperatureT andthethermoclinedepthanomalyshouldbe sub takenintoaccount: T = ah −e∗h3 +O(h5), (7) sub E E E wherethevaluesforthecoefficients aandehavebeenroughlyestimatedin[9]as a ∼ 0.14◦Cm−1 and e∗ ∼ 3×10−5◦Cm−2. Fromthisnonlinearrelation,asmallcubictermin h wouldenteralso E inEq.(2)[9]. Giventhevaluesoftheaande∗ parameters,thecubictermshouldplaysomerolefor h ≥ ±2σ (σ isthestandarddeviationofh thatisalittleover10m[27]),reachingthesamevalue E hE hE √ E ofthelineartermfor h = a/e∗ = 36m(about3σ ). Usingthesearguments, in[28]ithasbeen E hE alreadyshownthatanonlinearROM,linearlyinteractingwiththeatmosphere,hasanonnormal stationaryPDF.However,aswecanseeinRef.[24],Figure5,bothobservationsandnumericalresults showthattherelationshipbetween T and hismainlylinear,withasmalldispersionofthedata sub aroundthelinearfitandwithacoefficientthatisclosetoonewhenthequantitiesarenormalized bythestandarddeviationofthequantitiesfromobservations. Inthisfigurethevaluesforh range E from±4σ ,thusitfollowsthatinEq.(7)thecoefficiente∗ ofthenonlineartermmustbereallysmall, hE Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 September 2018 doi:10.20944/preprints201809.0239.v1 5of30 smallerthanthevalueestimatedin[9]. Despitethat,fornowwetakeintoaccountthissmallnonlinear term,thatonlycomesintoplayforverystrongENSO. ThusweconsiderthefollowingnonlinearROM: h˙ = −rh −αbT W W E T˙ = γU(cid:48)(h )−λT +g(t), (8) E W E inwhich U(h ) = h2 /2+κh4 /4+O(h6 ) (9) W W W W whereκisasmallparameterorder10−4m−4andforagenericfunction f(x)wehavedefined f(cid:48)(x) = df(x)/dx. Toverifyifthenonlinearityduetoanonvanishingvalueofκcanjustify,atleasttosome extent, the non Gaussian features of the observed Niño3 index shown in Fig. 1, we try to find the stationaryPDFthatcanbederivedfromEq.(8),consideringg(t)asanadditivefastfluctuatingforcing. Forthat,wechangevariables: v ≡ −rh −αbT ,x = h . Eq.(8)becomes: W E W x˙ = v v˙ = −αbγU(cid:48)(x)−(r+λ)v−λrx−αbg(t). (10) Ifg(t)isassumedtobeawhitenoisewithacorrelationfunction(cid:104)g(0)g(t)(cid:105) =2dδ(t),Eq.(10)describes thedynamicsofaparticlewithcoordinatex,velocityv,ina"almost"harmonicpotentialgivenby x2 x2 x4 V(x) = αbγU(x)+λr (cid:39) (λr+αbγ) +αbγκ (11) 2 2 4 andinteractingwithathermalbathwithfrictionr+λand“temperature”Θ = α2b2d/(r+λ). Itis wellknownthatthestationaryPDFforsuchasystemisthe“Canonical”one: ρ (x,v) = Ze−H(Θx,v), (12) s where Z isthenormalizationconstantand H(x,v) ≡ V(x)+ v2 istheHamiltonian. Thus, Θisthe 2 varianceofthe"velocity"variablev: Θ = (cid:104)v2(cid:105) ≡ σ2.Asforthex(= h )variable,wenoticethat,given s v W thesmallvalueoftheκparameter,thenonharmonictermαbγκx4/4inthepotentialV(x)ofEq.(11) givesanegligiblecontributiontothevariance,thuswealsohaveΘ (cid:39) (λr+αbγ)(cid:104)x2(cid:105) ≡ (λr+αbγ)σ2. s x ThereforethestationaryPDFofEq(12)isverywellapproximatedbyaGaussianfunctiontillx = h W farexceeds2standarddeviations,when,inanycaseanynonGaussianfeaturecouldnotreallyemerge becauseofthelowprobability. ThusweareledtotheconclusionthattheobservednonGaussian propertiesoftheENSOstatisticsarenotduetothepossiblynonlinearinteractionbetweentheinternal ROMvariables. Noticethatifweconsidertheexternalforcingg(t)asacorrelatednoise(i.e.,notwhite)orasa weakdeterministicchaoticperturbation,usingaZwanzig’-likeprojectionapproachintheperturbation version of [29–31] we obtain in any case a stationary PDF for the ROM variables that is similar to theoneinEq.(12),apartfromsomesmallchangesintheparameterΘandinthecoefficientsofthe potentialV(x). ThusalsointhesenonMarkoviancasesthesameargumentofthepreviouswhitenoise caseapplies: thenonGaussianfeaturesofthePDFwouldbenegligibleandnotaspronuncedasseen inobservations. So far we have shown that analyzing the relations between the dynamics of h and T , it is W E hardtofindnonlinearitiesstrongenoughtojustifythenonGaussianbehavioroftheENSOstatistics. Thus,fromnowonweshallassumethatthenonharmonicterminthepotentialU(h )ofEq.(9)can W Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 September 2018 doi:10.20944/preprints201809.0239.v1 6of30 be neglected. Namely, we return to the linear ROM of Eq. (6) and attempt to justify the observed nonlinearitiesfocusingontheinteractionoftheslowcomponentsoftheROMofEq.(6)withg(t). Itisworthwhileremarkingthatarecentstudy[32]hashighlightedtheimportanceofthenonlinear advectivetermsintheupper-oceantemperatureequationsasasourceofENSOnonlinearitiesand the resulting non-Gaussianity of eastern Pacific SST anomalies. These nonlinear advective terms, whichhavebeencollectivelytermedNonlinearDynamicalHeating(NDH)areprimarilycontrolled bytheanomaliesofthezonaladvectionterm(u(cid:48)∂ T(cid:48),see[32]forthenomenclature). However,the x asymmetricinfluenceofthenonlinearzonaladvectiontermuponwarmandcoldENSOeventsmay belinkedtothedistinctivemultiplicativecharacteroftheanomalouswindforcingofENSO,whichis strongerforpositivethannegativeanomalies. Nonlinearitiesinthesurfaceforcingandtheirinfluence ontheSSTstatisticsaredescribedinthenextsection. Beforedoingthat,however,wesimplifyalittleEq.(6)inthefollowingway: h˙ = −ωT E T˙ = ωh−λT +g(t), (13) E E whereh ≡ (h +h )/2isthezonallyaveragedthermoclinedepthanomaly(directlyrelatedtothe W E anomalousheataccumulatedintheEquatorialPacificocean),achoicejustifiedbytheargumentsand resultsof[3],shortlysummarizedhereafter. First,Eq.(1b)impliesthatthetiltofthethermoclinereacts almostinstantaneouslytowindstress, butitismorerealistictoassumethattheadjustmentofthe thermoclinedepthtakesafinitetime,approximatelythetimeittakesforaKelvinwavetopropagate fromthewesterncentralPacifictotheeast. ThusEq.(1b)shouldbereplacedby h˙ = −γ (h −h −τ ). E h E W s Second,repeatingthesamestepsthatleadusfromEq.(1b)toEq.(6),wegetanunperturbedROM givenbythreedifferentialequationsthatbetterrepresentstheENSOdynamics,leadingtoabetter agreementamongtheparameterofthemodelandobservations. Finally,studyingindetailthefeature ofthislinear3-degreesoffreedomsystem,weseethatoneeigenstatehasafastdecaytime(shorterthan onemonth),thus,thedynamicsisattractedtowarda2-dimensionalslowmanifold,wellrepresented bythereducedROMofEq.(13). Suitablevaluesforωandλ(the“friction”coefficient),canbeobtainedbyusingphenomenological considerations when deriving the ROM from building block equations, and/or directly from a fit to observations (see [3]). In literature, we find different values that range from 2π/48month−1 to 2π/36month−1 for ω andfrom1/12month−1 to1/6month−1 for λ. Weshallseeinthefollowing thatwecanshrinktheseranges. 3. Themultiplicativenatureoftheforcing Insomerecentworksithasbeenshownthattoaccountfortheinstabilityofthedynamics,the skewnessandthetailoftheobservedstationaryPDFoftheENSO,theperturbationforcingg(t)ofthe ROMcannotbesimplyadditive,butamultiplicativeterm,directlycorrelatedwiththeadditiveone, shouldalsobeconsidered[5,6,8],leadingtoastochasticperturbationoftheform: g(t) = (cid:101)(1+βT )ξ(t), (14) E where ξ(t) is a fast chaotic fluctuating term and (cid:101) is a parameter that controls the strength of the interaction. ManyfactssupportthehypothesisgivenbyEq.(14): • themultiplicativenatureoftheENSOforcingprovidedbytheMadden-Julianoscillation(MJO) anditshigherfrequencytail[33,34,andreferencestherein]; • multiplicativefastforcingstypicallyemergesfromthegeneralperturbationapproachestolarge scaleoceandynamics[35,36]; Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 September 2018 doi:10.20944/preprints201809.0239.v1 7of30 Figure1. HistogramofthefrequencyforthethreemonthsaverageNINO3datafromNOAA[39]. DashedlineisthebestfitofthestationaryPDFfoundin[8](stronglyskewedandwithaheavytail), solidbluelineisanormaldistributionwithsameaverageandvarianceoftheobservationdata. • consideringthenonlinearnatureoftheheatbudgetequationforthesurfacemixedlayer[37]we getmultiplicativefastfluctuationsinboththenetsurface/subsurfaceheatfluxandtheadvective contributions[7,32,35,36]. Concerningthelastpoint,weagainnoticethattheequatorialPacificzonalsubsurfaceNDHu(cid:48)∂ T(cid:48),that x playsaroleintheasymmetryoftheElNiño-LaNiñaevents[32],maybelinkedtothemultiplicative term(cid:101)βT ξ(t)ofEq.(14),assumingthatξ(t)andT aredirectlyrelatedtou(cid:48) and∂ T(cid:48),respectively. E E x Thus,insertingEq.(14)intheROMofEq.(13),weget: h˙ = −ωT E T˙ = ωh−λT +(cid:101)(1+βT )ξ(t), (15) E E E thatisthefinalmodelweshalltakeintoaccounthereafter. When ξ(t) is a white noise, the term (1 + βT )ξ(t) is often named E Correlated-Additive-Multiplicative (CAM) noise [11–13], but we shall extend this notation alsotodeterministic(i.e.,notstochastic)processes,sayingthat(1+βT )ξ(t)isaCAMforcing. In E Section5,startingfromobservations,weshalluseastatisticalinferencemethodfordiffusionprocesses withnonlineardrifttoestimatetheeffectivecontributionoftheCAMforcingwithrespecttoamore simpleadditivefastforcing. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 September 2018 doi:10.20944/preprints201809.0239.v1 8of30 Ingeneral,itisreasonablethatatleastapartoftheadditiveforcingshouldnotbecorrelatedwith themultiplicativeone,i.e.,thattherearedifferentindependentfastchaoticforcingthatcanbecollected asanindependentadditivecontribution,uncorrelatedtothepreviousone,consideredabove: g(t) = f(t)+(1+βT )ξ(t), (16) E where f(t) is uncorrelated with ξ(t). However, for the sake of simplicity, we do not consider this possibilityhere. ThismoregeneralROMwillbeexaminedinasubsequentpaper. Wewanttostressagainthatwedonotmaketheassumptionthattheforcingtermξ(t)ofEq.(15) hasastochasticnature. ξ(t)isadeterministic“chaotic”forcing,andstatisticsisintroducedbyusing theGibbsconceptofensemble(ourPDF). 4. TheFokkerPlanckEquationguidingthestatisticsoftheROM The ROM of Eq. (15) must be validated by observations of the ENSO, namely we must use some data analysis approach to infer the values of the coefficients of the ROM of Eq. (15). Due to themultiplicativecharacteroftheperturbation,thesystemisnotlinearthus,strictlyspeaking,well consolidatedapproachesbasedontheGaussianpropertiesofthedatadispersion,suchastheLIM, cannotbeusedinthiscase. However,asitwillbeshowninthenextSection,ifweobserveonly,orif weareinterestedonlyinthefirst(themean)andthesecond(thevariance)moments,thenthesystem ofEq.(15)lookslikelinear,witheigenvaluesthatareweaklyrenormalizedbytheβparameteranda constantforcingthatdependslinearlyonβ. Ofcourse,replacingthenonlinearROMofEq.(15)witha linearone,alltheinformationsconcerninglargedeviationsfromtheaverageswillbelost. Tobereallyinapositiontodistinguish,inthemodelofEq.(15),betweenthedynamicsofthe ENSOvariablesofinterest(h,T ),andthatofthe“restofthesystem”,mimickedbythecollective E variableξ(t),itisimplicitlyassumedthatthereisatimescaleseparationand/oraweakinteraction betweenthesetwosubsystems. Itisafactthatthedynamicsoftheatmosphereforcingtriggering the ENSO, that is represented by the term proportional to the (cid:101) parameter in Eq. (15), has a time scalethatisshorterthanthetimescaleoftheaveragedynamicsoftheENSO.Thus,wecansaythat theautocorrelationtimeτofξ(t)issmallerthantheperiodandrelaxationtimeoftheunperturbed √ ROM,givenby1/ ω2−λ2/4and2/λ,respectively. Noticethat“shorter"doesnotnecessarilymean “extremelyshorter”,but,ifthisisthecase,wecanapproximateξ(t)byawhitenoise[17–20],with (cid:104)ξ(0)ξ(t)(cid:105) = 2(cid:104)ξ2(cid:105)τδ(t). Itisawellknownresultthatifξ(t)isreplacedwithawhitenoise,Eq.(15) becomesequivalenttothefollowingFokkerPlanckEquation(FPE)fortheProbabilityDensityFunction (PDF)σ(h,T;t)oftheROMvariables(weshallusetheStratonovichintegrationruleforwhitenoise dynamics[40],hereafterforthesakeofsimplicityweshalluseTforT and∂ ≡ ∂/∂t,∂ ≡ ∂/∂hand E t h ∂ ≡ ∂/∂T): T (cid:8) ∂ σ(h,T;t) = ω∂ T−ω∂ h+λ ∂ T+Dβ∂ (1+βT) t h T T T +∂ D(1+βT)2∂ (cid:9)σ(h,T;t) T T (cid:8) = ω∂ T−ω∂ h+λ ∂ T−Dβ∂ (1+βT) h T T T +∂2 D(1+βT)2(cid:9)σ(h,T;t) (17) T whereD ≡ (cid:101)2(cid:104)ξ2(cid:105)τisthe“standard”diffusioncoefficient. InthecasewherethetimescaleseparationbetweentheunperturbedROMandthefastforcingis notsoextreme,aswehavealreadystressedwecannotapproximatethedeterministicforcingξ(t)with awhitenoise,andwehavetoworkwithensembles(i.e.,PDF)ofwhichthetimeevolutionisguidedby theLiouvilliancorrespondingtotheequationofmotionoftheperturbedROMofEq.(15). Starting fromtheLiouvilleequation,assumingweakperturbationoftheROM(small(cid:101)values),andusinga projectionperturbationapproach,itisthuspossibletoderiveaneffectiveFPEthatwellapproximates Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 September 2018 doi:10.20944/preprints201809.0239.v1 9of30 thedynamicsofthePDF[8](seealsoAppendixBforashortsummaryofthisprojectionprocedure, adaptedtothepresentcaseofEq.(15)): (cid:8) ∂ σ(h,T;t) = ω∂ T−ω∂ h t h T +(λ+Dβ2)∂ T+Dβ∂ T T (cid:9) +∂ A(h,T)∂ +∂ B(h,T)∂ σ(h,T;t), (18) T T T h where the decay time τ of the auto-correlation function of ξ is defined in the following way: if (cid:82)∞ ϕ(t) ≡ (cid:104)ξ(t)ξ(0)(cid:105)/(cid:104)ξ2(cid:105)isthenormalizedautocorrelationfunctionofξ,thenτ ≡ ϕ(t)dt. Asin[8], 0 thediffusionfunctions A(h,T)andB(h,T)aresecondorderpolynomialsoftheROMvariables(h,T): A(h,T) =A +βA h+βA T 0 1 2 +β2A hT+β2A T2 3 4 B(h,T) =B +βB h+βB T 0 1 2 +β2B hT+β2B T2. (19) 3 4 AsitisshowninAppendixB,the A andB coefficientsareproportionalto(cid:101)2,donotdependontheβ i i parameterandarelinearcombinationsoftheFouriertransformofthefunction ϕ(t),evaluatedatthe √ frequencies2ΩandΩ−iλ/2,whereΩ ≡ ω2−λ2/4istheeffectivefrequencyoftheunperturbed ROM. FromtheFPEitispossibletogetalltherelevantstatisticalinformationabouttheENSOvariables, including the T moments and the stationary PDF. From a formal point of view, it is worthwhile mentioningthefactthattheFPEinEq.(18)isasecondorderPartialDifferentialEquation(PDE)with discriminant [41] equal to B(h,T)2/2 ≥ 0, thus, for non vanishing B(h,T), this PDE is hyperbolic, andnotparabolicastheFPEofEq.(17)stemmingfrom“true”stochasticMarkovianprocesses. The diffusioncoefficientB(h,T)isasignatureofthefinite(i.e. “noninfinite")timescaleseparationbetween thedynamicsofthesystemofinterestandthatofthebooster. 5. InferenceofthestatisticalfeaturesoftheROMfromobservations 5.1. LinearequationofmotionforthefirsttwomomentsoftheROMandthewhitenoiseapproximation UsingtheFPEofEqs.(18)-(19),itiseasytoobtainasetofclosedequationsofmotionforthefirst n-thmomentsoftheROM.Forthemomentsuptothesecondonesweget: (cid:104)h˙(cid:105) = −ω(cid:104)T(cid:105) (cid:104)T˙(cid:105) = (ω+β2A )(cid:104)h(cid:105)−(λ−β2A )(cid:104)T(cid:105)+βA (20a) 3 4 0 (cid:104)h˙2(cid:105) = −2ω(cid:104)hT(cid:105) (cid:104)h˙T(cid:105) = (ω+β2A )(cid:104)h2(cid:105) 3 −(λ−β2D)(cid:104)hT(cid:105)−(ω−β2B )(cid:104)T2(cid:105) 4 +β(D+A −A )(cid:104)h(cid:105)−βB (cid:104)T(cid:105)+B 0 4 2 0 (cid:16) (cid:17) (cid:104)T˙2(cid:105) =2(ω+2β2A )(cid:104)hT(cid:105)−2 λ−β22A (cid:104)T2(cid:105) 3 4 +2β(2A +A )(cid:104)T(cid:105)+2βA (cid:104)h(cid:105)+2A , (20b) 0 4 3 0 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 September 2018 doi:10.20944/preprints201809.0239.v1 10of30 fromwhich(hereafterthesubscript“s”standsfor“stationary”) A (cid:18) β2A (cid:19) (cid:104)T2(cid:105) = 0 1− 3 s λ−2β2A β2A +ω 4 3 (cid:20) (cid:18) (cid:19)(cid:21) A A A A ≈ 0 1+β2 2 4 − 3 +O((cid:101)6) ≈ 0 +O((cid:101)4) (21) λ λ ω λ Thus,thewidthofthestationaryPDFcanbeconsideredindependentofβ. Eq. (20a) is equivalent to the equation of motion of a linear dissipative oscillator, with bare (cid:112) frequency ω2+β2A andfrictioncoefficient(λ−β2A ),perturbedbytheconstantforceβA . The 3 4 0 weak perturbation assumption (small (cid:101)) and the fact that β ∼ 0.2 imply that ω+β2A ∼ ω and 3 (λ−β2A ) ∼ λ. Thus,theequationofmotionofthefirstmoment(Eq.(20a))isverysimilartothat 4 oftheunperturbed((cid:101) =0)ROM(apartfromtheconstantforcingβA thatcanbedisregarded,aswe 0 willshowshortly). Thisfactisreallyimportantbecausefromaphysicalpointofviewitgivesasound meaningtothedefinitionofunperturbedROMofEq.(13): itisthedynamicalsystemthatcorresponds tothe“slow”partoftheENSOdynamics. Concerningtheconstantforce βA appearinginEq.(20a),itisnotreallymeasurable,infactit 0 is an “artifact” of the final approximation that, from the ROM of Eq. (6), leads to Eq. (15). This is clearfromthefactthatthisconstantforcingyieldsanonvanishingaveragestationaryvalueforthe thermoclinedepthanomaly: (cid:104)h(cid:105) ∼ −βA /ω. Tocurethisflawweshouldreplacehwithh−βA /ω s 0 0 inEq.(15). However,becauseweshallfocusourattentiononT,wewillleavetheROMunchanged. Concerningtheequationsofmotionofthesecondmoments(Eq.(20b)),weseethattheyweakly dependontheBdiffusioncoefficient. Moreover,usingtherelationshipsofEqs.(B9),(B13)and(B14), wehavethattheymainlydependon βand A ,thus,thedynamicsofthesecondmomentsshould 0 not depend too much on the time scale separation between the average ROM dynamics and that ofthefastforcingξ. Estimatesofthetimescale1/λareintherangeof6-12months. Assumingan exponentialdecayoftheautocorrelationfunctionofξ,i.e. ϕ(t) =exp(−t/τ),wecanverifythatfor τupto∼ 3monththetransportcoefficient Ahasthesamestructureithasinthelimitofverylarge timescaleseparation(τ → 0),namely A(T) ∼ A (1+βT)2 (seeFig.2)and,asitisshowninFig.3, 0 thedynamicsofthesecondmomentsisalmostindependentofτ. Theresultsofthissectionallowus togettwomainimportantconclusions: 1. analyzing only the first and second moments/cumulants/cross-correlation functions of the observationsdatawecannotidentify/detectthe(possible)nonlinearityduetotheinteraction withtheatmosphere,intheENSOsystem; 2. comparingthefirstandsecondmoments/cumulants/cross-correlationfunctionsweobtainfrom theFPEofEq.(18)withobservations,itwouldbereallyhardtodeterminehowsmallisthetime scaleτofdecayingofthecorrelationfunctionoftheeffectivenoiseperturbingtheROM.Onthe otherhand,asithasbeenshownin[8],alsoforτ →0theFPEofEq.(18)wellaccountsforthe nonGaussianityoftheENSOstatistics. Thus,forthesakeofsimplicity,fromnowon,weshall usetheFPEofEq.(17)thatisthewhitenoiselimitofEq.(18),evenifweareawareofthefact thatthetimescaleseparationbetweenthedynamicsoftheaveragedROMandthatofthefast atmosphereisnotso“extreme”. Inthenextsub-sectionweshallanalyzethepoint1indetail. 5.2. ThecovariancematrixoftheROMandthecomparisonwiththeENSOdata Given the results of the previous sub-section, we assume that to describe the statistics of the ENSOwecanusethesimplifiedFPEofEq.(17),insteadofthemoregeneralEq.(18). ThisFPEmustbe validatedwithdatafromobservations.

Description:
Probability Density Function (PDF) on the whole phase space spanned by the variables of the system. 2. The dynamics of the components of the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.