ebook img

Linear Models and the Relevant Distributions and Matrix Algebra PDF

539 Pages·2018·5.04 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Linear Models and the Relevant Distributions and Matrix Algebra

Linear Models and the Relevant Distributions and Matrix Algebra CHAPMAN & HALL/CRC Texts in Statistical Science Series Series Editors Joseph K. Blitzstein, Harvard University, USA Julian J. Faraway, University of Bath, UK Martin Tanner, Northwestern University, USA Jim Zidek, University of British Columbia, Canada Statistical Theory: A Concise Introduction Problem Solving: A Statistician’s Guide, F. Abramovich and Y. Ritov Second Edition C. Chatfield Practical Multivariate Analysis, Fifth Edition A. Afifi, S. May, and V.A. Clark Statistics for Technology: A Course in Applied Statistics, Third Edition Practical Statistics for Medical Research C. Chatfield D.G. Altman Analysis of Variance, Design, and Regression : Interpreting Data: A First Course Linear Modeling for Unbalanced Data, in Statistics Second Edition A.J.B. Anderson R. Christensen Introduction to Probability with R K. Baclawski Bayesian Ideas and Data Analysis: An Introduction for Scientists and Statisticians Linear Algebra and Matrix Analysis for R. Christensen, W. Johnson, A. Branscum, Statistics and T.E. Hanson S. Banerjee and A. Roy Modelling Binary Data, Second Edition Modern Data Science with R D. Collett B. S. Baumer, D. T. Kaplan, and N. J. Horton Modelling Survival Data in Medical Research, Mathematical Statistics: Basic Ideas and Third Edition Selected Topics, Volume I, D. Collett Second Edition P. J. Bickel and K. A. Doksum Introduction to Statistical Methods for Clinical Trials Mathematical Statistics: Basic Ideas and T.D. Cook and D.L. DeMets Selected Topics, Volume II P. J. Bickel and K. A. Doksum Applied Statistics: Principles and Examples Analysis of Categorical Data with R D.R. Cox and E.J. Snell C. R. Bilder and T. M. Loughin Multivariate Survival Analysis and Competing Statistical Methods for SPC and TQM Risks D. Bissell M. Crowder Introduction to Probability Statistical Analysis of Reliability Data J. K. Blitzstein and J. Hwang M.J. Crowder, A.C. Kimber, T.J. Sweeting, and R.L. Smith Bayesian Methods for Data Analysis, Third Edition An Introduction to Generalized B.P. Carlin and T.A. Louis Linear Models, Third Edition A.J. Dobson and A.G. Barnett Second Edition R. Caulcutt Nonlinear Time Series: Theory, Methods, and Applications with R Examples The Analysis of Time Series: An Introduction, R. Douc, E. Moulines, and D.S. Stoffer Sixth Edition C. Chatfield Introduction to Optimization Methods and Their Applications in Statistics Introduction to Multivariate Analysis B.S. Everitt C. Chatfield and A.J. Collins Extending the Linear Model with R: Mathematical Statistics Generalized Linear, Mixed Effects and K. Knight Nonparametric Regression Models, Introduction to Functional Data Analysis Second Edition P. Kokoszka and M. Reimherr J.J. Faraway Introduction to Multivariate Analysis: Linear Models with R, Second Edition Linear and Nonlinear Modeling J.J. Faraway S. Konishi A Course in Large Sample Theory Nonparametric Methods in Statistics with SAS T.S. Ferguson Applications Multivariate Statistics: A Practical O. Korosteleva Approach Modeling and Analysis of Stochastic Systems, B. Flury and H. Riedwyl Third Edition Readings in Decision Analysis V.G. Kulkarni S. French Exercises and Solutions in Biostatistical Theory Discrete Data Analysis with R: Visualization L.L. Kupper, B.H. Neelon, and S.M. O’Brien and Modeling Techniques for Categorical and Exercises and Solutions in Statistical Theory Count Data L.L. Kupper, B.H. Neelon, and S.M. O’Brien M. Friendly and D. Meyer Design and Analysis of Experiments with R Markov Chain Monte Carlo: J. Lawson Stochastic Simulation for Bayesian Inference, Design and Analysis of Experiments with SAS Second Edition J. Lawson D. Gamerman and H.F. Lopes A Course in Categorical Data Analysis Bayesian Data Analysis, Third Edition T. Leonard A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, and D.B. Rubin Statistics for Accountants S. Letchford Multivariate Analysis of Variance and Repeated Measures: A Practical Approach for Introduction to the Theory of Statistical Behavioural Scientists Inference D.J. Hand and C.C. Taylor H. Liero and S. Zwanzig Practical Longitudinal Data Analysis Statistical Theory, Fourth Edition D.J. Hand and M. Crowder B.W. Lindgren Linear Models and the Relevant Distributions Stationary Stochastic Processes: Theory and and Matrix Algebra Applications D.A. Harville G. Lindgren Logistic Regression Models Statistics for Finance J.M. Hilbe E. Lindström, H. Madsen, and J. N. Nielsen Richly Parameterized Linear Models: The BUGS Book: A Practical Introduction to Additive, Time Series, and Spatial Models Bayesian Analysis Using Random Effects D. Lunn, C. Jackson, N. Best, A. Thomas, and J.S. Hodges D. Spiegelhalter Statistics for Epidemiology Introduction to General and Generalized N.P. Jewell Linear Models H. Madsen and P. Thyregod Stochastic Processes: An Introduction, Third Edition Time Series Analysis P.W. Jones and P. Smith H. Madsen The Theory of Linear Models Pólya Urn Models B. Jørgensen H. Mahmoud Pragmatics of Uncertainty Randomization, Bootstrap and Monte Carlo J.B. Kadane Methods in Biology, Third Edition B.F.J. Manly Principles of Uncertainty J.B. Kadane Statistical Regression and Classification: From Linear Models to Machine Learning Graphics for Statistics and Data Analysis with R N. Matloff K.J. Keen Introduction to Randomized Controlled Statistical Methods for Spatial Data Analysis Clinical Trials, Second Edition O. Schabenberger and C.A. Gotway J.N.S. Matthews Bayesian Networks: With Examples in R Statistical Rethinking: A Bayesian Course with M. Scutari and J.-B. Denis Examples in R and Stan Large Sample Methods in Statistics R. McElreath P.K. Sen and J. da Motta Singer Statistical Methods in Agriculture and Introduction to Statistical Methods for Experimental Biology, Second Edition Financial Models R. Mead, R.N. Curnow, and A.M. Hasted T. A. Severini Statistics in Engineering: A Practical Approach Spatio-Temporal Methods in Environmental A.V. Metcalfe Epidemiology Statistical Inference: An Integrated Approach, G. Shaddick and J.V. Zidek Second Edition Decision Analysis: A Bayesian Approach H. S. Migon, D. Gamerman, and J.Q. Smith F. Louzada Analysis of Failure and Survival Data Beyond ANOVA: Basics of Applied Statistics P. J. Smith R.G. Miller, Jr. Applied Statistics: Handbook of GENSTAT A Primer on Linear Models Analyses J.F. Monahan E.J. Snell and H. Simpson Stochastic Processes: From Applications to Applied Nonparametric Statistical Methods, Theory Fourth Edition P.D Moral and S. Penev P. Sprent and N.C. Smeeton Applied Stochastic Modelling, Second Edition Data Driven Statistical Methods B.J.T. Morgan P. Sprent Elements of Simulation Generalized Linear Mixed Models: B.J.T. Morgan Modern Concepts, Methods and Applications Probability: Methods and Measurement W. W. Stroup A. O’Hagan Survival Analysis Using S: Analysis of Introduction to Statistical Limit Theory Time-to-Event Data A.M. Polansky M. Tableman and J.S. Kim Applied Bayesian Forecasting and Time Series Applied Categorical and Count Data Analysis Analysis W. Tang, H. He, and X.M. Tu A. Pole, M. West, and J. Harrison Elementary Applications of Probability Theory, Statistics in Research and Development, Second Edition Time Series: Modeling, Computation, and H.C. Tuckwell Inference Introduction to Statistical Inference and Its R. Prado and M. West Applications with R Essentials of Probability Theory for M.W. Trosset Statisticians Understanding Advanced Statistical Methods M.A. Proschan and P.A. Shaw P.H. Westfall and K.S.S. Henning Introduction to Statistical Process Control Statistical Process Control: Theory and P. Qiu Practice, Third Edition Sampling Methodologies with Applications G.B. Wetherill and D.W. Brown P.S.R.S. Rao Generalized Additive Models: A First Course in Linear Model Theory An Introduction with R, Second Edition N. Ravishanker and D.K. Dey S. Wood Essential Statistics, Fourth Edition Epidemiology: Study Design and D.A.G. Rees Data Analysis, Third Edition M. Woodward Stochastic Modeling and Mathematical Statistics: A Text for Statisticians and Practical Data Analysis for Designed Quantitative Scientists Experiments F.J. Samaniego B.S. Yandell Texts in Statistical Science Linear Models and the Relevant Distributions and Matrix Algebra David A. Harville CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2018 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper Version Date: 20180131 International Standard Book Number-13: 978-1-138-57833-3 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Names: Harville, David A., author. Title: Linear models and the relevant distributions and matrix algebra / David A. Harville. Description: Boca Raton : CRC Press, 2018. | Includes bibliographical references and index. Identifiers: LCCN 2017046289 | ISBN 9781138578333 (hardback : alk. paper) Subjects: LCSH: Matrices--Problems, exercises, etc. | Mathematical statistics--Problems, exercises, etc. Classification: LCC QA188 .H3798 2018 | DDC 512.9/434--dc23 LC record available at https://lccn.loc.gov/2017046289 Visit the e-resources at: https://www.crcpress.com/9781138578333 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents Preface ix 1 Introduction 1 1.1 LinearStatisticalModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 RegressionModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 ClassificatoryModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 HierarchicalModelsandRandom-EffectsModels . . . . . . . . . . . . . . . . . 7 1.5 StatisticalInference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.6 AnOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2 MatrixAlgebra:APrimer 23 2.1 TheBasics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 PartitionedMatricesandVectors . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3 Traceofa(Square)Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4 LinearSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.5 InverseMatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.6 RanksandInversesofPartitionedMatrices . . . . . . . . . . . . . . . . . . . . . 44 2.7 OrthogonalMatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.8 IdempotentMatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.9 LinearSystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.10 GeneralizedInverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.11 LinearSystemsRevisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.12 ProjectionMatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.13 QuadraticForms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.14 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 BibliographicandSupplementaryNotes . . . . . . . . . . . . . . . . . . . . . . 85 3 RandomVectorsandMatrices 87 3.1 ExpectedValues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.2 Variances,Covariances,andCorrelations . . . . . . . . . . . . . . . . . . . . . . 89 3.3 StandardizedVersionofaRandomVariable . . . . . . . . . . . . . . . . . . . . 97 3.4 ConditionalExpectedValuesandConditionalVariancesandCovariances . . . . 100 3.5 MultivariateNormalDistribution . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 BibliographicandSupplementaryNotes . . . . . . . . . . . . . . . . . . . . . . 122 4 TheGeneralLinearModel 123 4.1 SomeBasicTypesofLinearModels . . . . . . . . . . . . . . . . . . . . . . . . 124 4.2 SomeSpecificTypesofGauss–MarkovModels(withExamples) . . . . . . . . . 129 4.3 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 4.4 HeteroscedasticandCorrelatedResidualEffects . . . . . . . . . . . . . . . . . . 136 4.5 MultivariateData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 viii Contents Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 BibliographicandSupplementaryNotes . . . . . . . . . . . . . . . . . . . . . . 162 5 EstimationandPrediction:ClassicalApproach 165 5.1 LinearityandUnbiasedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 5.2 TranslationEquivariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 5.3 Estimability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 5.4 TheMethodofLeastSquares . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 5.5 BestLinearUnbiasedorTranslation-EquivariantEstimationofEstimableFunctions (undertheG–MModel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 5.6 SimultaneousEstimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 5.7 EstimationofVariabilityandCovariability . . . . . . . . . . . . . . . . . . . . . 198 5.8 Best(Minimum-Variance)UnbiasedEstimation . . . . . . . . . . . . . . . . . . 211 5.9 Likelihood-BasedMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 5.10 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 BibliographicandSupplementaryNotes . . . . . . . . . . . . . . . . . . . . . . 252 6 SomeRelevantDistributionsandTheirProperties 253 6.1 Chi-Square,Gamma,Beta,andDirichletDistributions . . . . . . . . . . . . . . 253 6.2 NoncentralChi-SquareDistribution . . . . . . . . . . . . . . . . . . . . . . . . 267 6.3 CentralandNoncentralF Distributions . . . . . . . . . . . . . . . . . . . . . . 281 6.4 Central,Noncentral,andMultivariatet Distributions . . . . . . . . . . . . . . . 290 6.5 MomentGeneratingFunctionoftheDistributionofOneorMoreQuadraticForms orSecond-DegreePolynomials(inaNormallyDistributedRandomVector) . . . 303 6.6 Distribution of Quadratic Forms or Second-Degree Polynomials (in a Normally DistributedRandomVector):Chi-Squareness . . . . . . . . . . . . . . . . . . . 308 6.7 The Spectral Decomposition, with Application to the Distribution of Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 6.8 MoreontheDistributionofQuadraticFormsorSecond-DegreePolynomials(ina NormallyDistributedRandomVector) . . . . . . . . . . . . . . . . . . . . . . . 326 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 BibliographicandSupplementaryNotes . . . . . . . . . . . . . . . . . . . . . . 349 7 ConfidenceIntervals(orSets)andTestsofHypotheses 351 7.1 “SettingtheStage”: ResponseSurfacesintheContextofaSpecificApplicationand inGeneral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 7.2 AugmentedG–MModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 7.3 TheF Test(andCorrespondingConfidenceSet)andaGeneralizedS Method . . 364 7.4 SomeOptimalityProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 7.5 One-Sidedt TestsandtheCorrespondingConfidenceBounds . . . . . . . . . . . 421 7.6 TheResidualVariance2: ConfidenceIntervalsandTestsofHypotheses . . . . 430 7.7 Multiple Comparisons and Simultaneous Confidence Intervals: Some Enhance- ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441 7.8 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492 BibliographicandSupplementaryNotes . . . . . . . . . . . . . . . . . . . . . . 502 References 505 Index 513 Preface Linearstatisticalmodelsprovidethetheoreticalunderpinningsformanyofthestatisticalprocedures in common use. In deciding on the suitability of one of those procedures for use in a potential application, it would seem to be important to know the assumptions embodied in the underlying modelandthetheoreticalpropertiesoftheprocedureasdeterminedonthebasisofthatmodel.In fact, the valueof such knowledgeis notlimited to its value in decidingwhetheror notto use the procedure.When(asisfrequentlythecase)oneormoreoftheassumptionsappeartobeunrealistic, suchknowledgecanbeveryhelpfulindevisingasuitablymodifiedprocedure—asituationofthis kindisillustratedinSection7.7f. Knowledgeofmatrixalgebrahasineffectbecomeaprerequisiteforreadingmuchoftheliterature pertainingtolinearstatisticalmodels.Theuseofmatrixalgebrainthisliteraturestartedtobecome commonplaceinthemid1900s.AmongtheearlyadopterswereScheffé(1959),Graybill(1961),Rao (1965),andSearle(1971).Whenitcomestoclarityandsuccinctnessofexposition,theintroduction of matrixalgebrarepresenteda greatadvance.However,thosewithoutan adequateknowledgeof matrixalgebrawereleftataconsiderabledisadvantage. Amongtheproceduresformakingstatisticalinferencesareonesthatarebasedonanassumption thatthedatavectoristherealizationofarandomvector,sayy,thatfollowsalinearstatisticalmodel. Thepresentvolumediscussesproceduresofthatkindandthepropertiesofthoseprocedures.Included inthecoveragearevariousresultsfrommatrixalgebraneededtoeffectanefficientpresentationofthe proceduresandtheirproperties.Alsoincludedinthecoveragearetherelevantstatisticaldistributions. Someofthesupportingmaterialonmatrixalgebraandstatisticaldistributionsisinterspersedwith thediscussionoftheinferentialproceduresandtheirproperties. Twoclassicalproceduresaretheleastsquaresestimator(ofanestimablefunction)andtheF test. TheleastsquaresestimatorisoptimalinthesensedescribedinaresultknownastheGauss–Markov theorem.TheGauss–Markovtheoremhasarelativelysimpleproof.Resultsontheoptimalityofthe F testarestatedandprovedherein(inChapter7); theproofsoftheseresultsarerelativelydifficult andless“accessible”—referenceissometimesmadetoWolfowitz’s(1949)proofsofresultsonthe optimalityoftheF test,whichare(atbest)extremelyterse. TheF testisvalidunderanassumptionthatthedistributionoftheobservablerandomvectoryis multivariatenormal.However,thatassumptionisstrongerthannecessary.Ascanbediscernedfrom resultslikethosediscussedbyFang,Kotz,andNg(1990),ashasbeenpointedoutbyRavishanker and Dey (2002, sec. 5.5), and is shown herein, the F test and various related proceduresdepend ony onlythrougha(possiblyvector-valued)functionofy whosedistributionisthesameforevery distributionofythatis“ellipticallysymmetric,”sothatthoseproceduresarevalidnotonlywhenthe distributionofy ismultivariatenormalbutmoregenerallywhenthedistributionofy iselliptically symmetric. Thepresentvolumeincludesconsiderablediscussionofmultiplecomparisonsandsimultaneous confidenceintervals.Atonetime,theuseofthesekindsofprocedureswasconfinedtosituationswhere therequisitepercentagepointswerethoseofadistribution(likethedistributionoftheStudentized range) that was sufficiently tractable that the percentage points could be computed by numerical means. The percentagepointscouldthen be tabulated or could be recomputedon an “as needed” basis. An alternative whose use is not limited by considerations of “numerical tractability” is to

Description:
Linear Models and the Relevant Distributions and Matrix Algebra provides in-depth and detailed coverage of the use of linear statistical models as a basis for parametric and predictive inference. It can be a valuable reference, a primary or secondary text in a graduate-level course on linear models,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.