Universitext Hans Wilhelm Alt Linear Functional Analysis An Application-Oriented Introduction Translated by Robert Nürnberg Universitext Universitext SeriesEditors SheldonAxler SanFranciscoStateUniversity VincenzoCapasso UniversitàdegliStudidiMilano CarlesCasacuberta UniversitatdeBarcelona AngusMacIntyre QueenMary,UniversityofLondon KennethRibet UniversityofCalifornia,Berkeley ClaudeSabbah CNRS,ÉcolePolytechnique,Paris EndreSüli UniversityofOxford WojborA.Woyczyn´ski CaseWesternReserveUniversityCleveland,OH Universitext is a series of textbooksthat presents material from a wide variety of mathematicaldisciplinesatmaster’slevelandbeyond.Thebooks,oftenwellclass- testedbytheirauthor,mayhaveaninformal,personalevenexperimentalapproach to their subject matter. Some of the most successful and established books in the series have evolved through several editions, always following the evolution of teachingcurricula,toverypolishedtexts. Thus as research topics trickle down into graduate-level teaching, first textbooks writtenfornew,cutting-edgecoursesmaymaketheirwayintoUniversitext. Moreinformationaboutthisseriesathttp://www.springer.com/series/223 Hans Wilhelm Alt Linear Functional Analysis An Application-Oriented Introduction Translated by Robert Nürnberg 123 Hans Wilhelm Alt Technische Universität München Garching near Munich Germany Translation from German language edition: Lineare Funktionalanalysis by Hans Wilhelm Alt Copyright © 2012, Springer Berlin Heidelberg Springer Berlin Heidelberg is part of Springer Science + Business Media All Rights Reserved ISSN0172-5939 ISSN2191-6675 (electronic) Universitext ISBN978-1-4471-7279-6 ISBN978-1-4471-7280-2 (eBook) DOI10.1007/978-1-4471-7280-2 LibraryofCongressControlNumber:2016944464 Mathematics Subject Classification: 46N20, 46N40, 46F05, 47B06, 46G10 ©Springer-Verlag London 1985, 1991, 1999, 2002, 2006, 2012, 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer-Verlag London Ltd. Preface ThepresentbookistheEnglishtranslationofapreviousGermanedition, alsopublishedbySpringerVerlag.ThetranslationwascarriedoutbyRobert Nu¨rnberg, who also did a marvellous job at detecting errors and mistakes in the original version. In addition, Andrei Iacob revised the English version. The book originated in a series of lectures I gave for the first time at the University of Bochum in 1980, and since then it has been repeatedly used in many lectures by me and other mathematicians and during this time it has changedaccordingly. IprovidethereaderwithanintroductiontoFunctional Analysis as a synthesis of Algebra, Topology, and Analysis, which is the source for basic definitions which are important for differential equations. The book includes a number of appendices in which special subjects are presented in more detail. Therefore its content is rich enough for a lecturer to find enough material to fill a course in functional analysis according to his special interests. The text can also be used as an additional source for lectures on partial differential equations or advanced numerical analysis. It must be said that my strategy has been dictated by the desire to offer the reader an easy and fast access to the main theorems of linear functional analysis and, at the same time, to provide complete proofs. So there is a separate appendix where the Lebesgue integral is introduced in a complete functional analytic way, andanappendix whith details for Sobolev functions which complete the proofs of the embedding theorems. Therefore the text is self-contained and the reader will benefit from this fact. Parallel to this edition, a revised German version has become available (Lineare Funktionalanalysis, 6. Edition, Springer 2012) with the same math- ematical content. This is made possible by a common source text. Therefore one does not have to worry about the content in different versions. I am happy that this book is now accessible to a wider community. If you find any errors or misprints in the text, please point them out to theauthorviaemail:“[email protected]”. Thiswillhelptoimprovethetextof possible future editions. I hope that this book is written in the good tradition of functional anal- ysis and will serve its readers well. I thank Springer Verlag for making the publication of this edition possible and for their kind support over many years. Technical University Munich, August 2015 H. W. Alt V Table of Contents 1 Introduction.............................................. 1 2 Preliminaries ............................................. 9 2.1 Scalar product ..................................... 9 2.3 Orthogonality ...................................... 11 2.4 Norm ............................................. 13 2.6 Metric ............................................ 16 2.8 Examples of metrics ................................ 16 2.9 Balls and distance between sets ...................... 18 2.10 Open and closed sets............................... 19 2.11 Topology ......................................... 19 2.14 Comparison of topologies ........................... 21 2.15 Comparison of norms .............................. 21 2.17 Convergence and continuity......................... 23 2.18 Convergence in metric spaces ....................... 24 2.21 Completeness ..................................... 27 2.22 Banach spaces and Hilbert spaces.................... 27 2.23 Sequence spaces ................................... 28 2.24 Completion ....................................... 30 E2 Exercises .............................................. 31 E2.6 Completeness of Euclidean space .................... 34 E2.7 Incomplete function space .......................... 34 E2.9 Hausdorff distance between sets..................... 35 3 Function spaces........................................... 37 3.1 Bounded functions.................................. 37 3.2 Continuous functions on compact sets ................. 38 3.3 Continuous functions................................ 39 3.4 Support of a function ............................... 41 3.5 Differentiable functions.............................. 41 3.7 H¨older continuous functions.......................... 44 3.9 Measures .......................................... 45 3.10 Examples of measures.............................. 46 3.11 Measurable functions............................... 47 VII VIII Table of Contents 3.15 Lebesgue spaces ................................... 50 3.18 H¨older’s inequality................................. 52 3.19 Majorant criterion in Lp............................ 55 3.20 Minkowski inequality............................... 55 3.21 Fischer-Riesz theorem.............................. 55 3.23 Vitali’s convergence theorem ........................ 57 3.25 Lebesgue’s general convergence theorem .............. 60 3.27 Sobolev spaces .................................... 63 E3 Exercises .............................................. 66 E3.3 Standard test function ............................. 67 E3.4 Lp-norm as p→∞ ................................ 67 E3.6 Fundamental theorem of calculus.................... 68 A3 Lebesgue’s integral ..................................... 71 A3.3 Elementary Lebesgue measure ...................... 72 A3.4 Outer measure.................................... 73 A3.5 Step functions .................................... 74 A3.6 Elementary integral ............................... 75 A3.8 Lebesgue integrable functions....................... 78 A3.10 Axioms of the Lebesgue integral ................... 79 A3.14 Integrable sets ................................... 84 A3.15 Measure extension ............................... 87 A3.18 Egorov’s theorem ................................ 90 A3.19 Majorant criterion ............................... 91 A3.20 Fatou’s lemma................................... 93 A3.21 Dominated convergence theorem ................... 94 4 Subsets of function spaces ................................ 95 4.1 Convexity ......................................... 95 4.3 Projection theorem ................................. 96 4.5 Almost orthogonal element .......................... 99 4.6 Compactness....................................... 100 4.12 Arzel`a-Ascoli theorem (compactness in C0) ........... 106 4.13 Convolution ...................................... 107 4.14 Dirac sequences ................................... 110 4.16 Riesz theorem (compactness in Lp) .................. 112 4.18 Examples of separable spaces ....................... 115 4.19 Cut-off function ................................... 118 4.20 Partition of unity.................................. 118 4.22 Fundamental lemma of calculus of variations .......... 122 4.23 Local approximation of Sobolev functions............. 122 4.25 Product rule for Sobolev functions ................... 124 4.26 Chain rule for Sobolev functions..................... 125 E4 Exercises .............................................. 126 E4.4 Strictly convex spaces.............................. 128 E4.5 Separation theorem in IRn.......................... 129 Table of Contents IX E4.6 Convex functions.................................. 129 E4.7 Characterization of convex functions................. 131 E4.8 Supporting planes ................................. 132 E4.9 Jensen’s inequality ................................ 133 E4.11 The space Lp for p<1............................ 134 E4.13 Compact sets in (cid:2)2 ............................... 135 E4.15 Comparison of Ho¨lder spaces ...................... 136 E4.16 Compactness with respect to the Hausdorff metric.... 137 E4.18 Continuous extension ............................. 138 E4.19 Dini’s theorem................................... 139 E4.20 Nonapproximability in C0,α ....................... 139 E4.21 Compact sets in Lp............................... 139 5 Linear operators.......................................... 141 5.2 Linear operators.................................... 142 5.7 Neumann series .................................... 146 5.8 Theorem on invertible operators...................... 147 5.9 Analytic functions of operators ....................... 147 5.10 Examples (exponential function)..................... 148 5.12 Hilbert-Schmidt integral operators ................... 149 5.14 Linear differential operators......................... 151 5.17 Distributions (The space D(cid:2)(Ω)) .................... 152 5.20 Topology on C∞(Ω) ............................... 156 0 5.21 The space D(Ω)................................... 157 E5 Exercises .............................................. 160 E5.3 Unique extension of linear maps..................... 160 E5.4 Limit of linear maps............................... 161 6 Linear functionals ........................................ 163 6.1 Riesz representation theorem......................... 163 6.2 Lax-Milgram theorem ............................... 164 6.4 Elliptic boundary value problems ..................... 167 6.5 Weak boundary value problems....................... 169 6.6 Existence theorem for the Neumann problem........... 170 6.7 Poincar´e inequality ................................. 171 6.8 Existence theorem for the Dirichlet problem ........... 171 6.10 Variational measure................................ 173 6.11 Radon-Nikody´m theorem ........................... 173 6.12 Dual space of Lp for p<∞ ......................... 175 6.14 Hahn-Banach theorem ............................. 180 6.15 Hahn-Banach theorem (for linear functionals) ......... 182 6.20 Spaces of additive measures......................... 185 6.21 Spaces of regular measures.......................... 185 6.23 Riesz-Radon theorem .............................. 187 6.25 Functions of bounded variation...................... 191