ebook img

Linear continuous-time systems PDF

496 Pages·2017·21.569 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Linear continuous-time systems

Linear Continuous-T ime Systems Linear Continuous-T ime Systems Lyubomir T. Gruyitch Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2017 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper Version Date: 20170501 International Standard Book Number-13: 978-1-138-03950-6 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Dedication Miodrag RAKITCH, D. Sci. (Belgrade, January 1, 1923 - Belgrade, December 28, 1998) Professor and Vice-Chairman of the Faculty of Electrical Engineering, University of Belgrade, Serbia, the son of a rich Serb who owned an industry before World War II, which communists nationalized after the War, the coauthor of the famous Belgrade artificial hand and the father of robotics in Serbia, the first President of the Association for Systems, Control and Measurement of Serbia and its first Distinguished and Honorary Member, the Supervisor of my Master of Science thesis, and the Member of the jury for the defence of my D.Sci. Dissertation. For his brave rejection of Hitler Nazis during World War II, courage and integrity although it was not in line with that of the Yugoslav Communist Party, fully objective evaluations of students’ and researchers’ works and deep devotion to support them regardless of their membership or non-membership in the Yugoslav Communist Party. For his permanent moral support since our first scientific discussion after his postgraduate lecture on linear systems up to the end of his rich and inspiring life. Lyubomir T. GRUYITCH v Contents List of Figures xiii Preface xvii I BASIC TOPICS OF LINEAR CONTINUOUS-TIME TIME-INVARIANT DYNAMICAL SYSTEMS 1 1 Introduction 3 1.1 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Time, physical principles, and systems . . . . . . . . . . . . . 6 1.3 Time and system dynamics . . . . . . . . . . . . . . . . . . . 8 1.4 Systems and complex domain . . . . . . . . . . . . . . . . . . 11 1.5 Notational preliminaries . . . . . . . . . . . . . . . . . . . . . 18 2 Classes of systems 21 2.1 IO systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 ISO systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3 IIO systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3 System Regimes 37 3.1 System regime meaning . . . . . . . . . . . . . . . . . . . . . 37 3.2 System regimes and initial conditions . . . . . . . . . . . . . . 38 3.3 Forced and free regimes . . . . . . . . . . . . . . . . . . . . . 39 3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.2 The temporal domain descriptions. The independent variable is time t ∈ T . . . . . . . . . . . . . . . . . . 40 0 3.3.3 The complex domain system descriptions. The inde- pendent variable is the complex variable s ∈ C . . . . 41 3.3.4 Basic problem . . . . . . . . . . . . . . . . . . . . . . 46 vii viii CONTENTS 3.4 Desired regime . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.2 IO systems . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.3 ISO systems . . . . . . . . . . . . . . . . . . . . . . . 52 3.4.4 IIO systems . . . . . . . . . . . . . . . . . . . . . . . . 56 3.5 Deviations and mathematical models . . . . . . . . . . . . . . 60 3.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 60 3.5.2 IO systems . . . . . . . . . . . . . . . . . . . . . . . . 62 3.5.3 ISO systems . . . . . . . . . . . . . . . . . . . . . . . 63 3.5.4 IIO systems . . . . . . . . . . . . . . . . . . . . . . . . 64 3.6 Stationary and nonstationary regimes . . . . . . . . . . . . . 67 3.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 67 3.6.2 IO systems . . . . . . . . . . . . . . . . . . . . . . . . 68 3.6.3 ISO systems . . . . . . . . . . . . . . . . . . . . . . . 72 3.6.4 IIO systems . . . . . . . . . . . . . . . . . . . . . . . . 75 3.7 Equilibrium regime . . . . . . . . . . . . . . . . . . . . . . . . 78 3.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 78 3.7.2 IO systems . . . . . . . . . . . . . . . . . . . . . . . . 79 3.7.3 ISO systems . . . . . . . . . . . . . . . . . . . . . . . 81 3.7.4 IIO systems . . . . . . . . . . . . . . . . . . . . . . . . 84 4 Transfer function matrix G(s) 89 II FULL TRANSFER FUNCTION MATRIX F(S) AND SYSTEM REALIZATION 91 5 Problem statement 93 6 Nondegenerate matrices 95 7 Definition of F(s) 103 7.1 Definition of F(s) in general . . . . . . . . . . . . . . . . . . . 103 7.2 Definition of F(s) of the IO system . . . . . . . . . . . . . . . 105 7.3 Definition of F(s) of the ISO system . . . . . . . . . . . . . . 110 7.4 Definition of F(s) of the IIO system . . . . . . . . . . . . . . 114 8 Determination of F(s) 121 8.1 F(s) of the IO system . . . . . . . . . . . . . . . . . . . . . . 121 8.2 F(s) of the ISO system . . . . . . . . . . . . . . . . . . . . . 133 8.3 F(s) of the IIO system . . . . . . . . . . . . . . . . . . . . . . 147 CONTENTS ix 8.4 Conclusion: Common general form of F(s) . . . . . . . . . . . 153 9 Full block diagram algebra 155 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 9.2 Parallel connection . . . . . . . . . . . . . . . . . . . . . . . . 157 9.3 Connection in series . . . . . . . . . . . . . . . . . . . . . . . 160 9.4 Feedback connection . . . . . . . . . . . . . . . . . . . . . . . 164 10 Physical meaning of F(s) 171 10.1 The IO system . . . . . . . . . . . . . . . . . . . . . . . . . . 171 10.2 The ISO system. . . . . . . . . . . . . . . . . . . . . . . . . . 175 10.3 The IIO system . . . . . . . . . . . . . . . . . . . . . . . . . . 179 11 System matrix and equivalence 185 11.1 System matrix of the IO system . . . . . . . . . . . . . . . . . 185 11.2 System matrix of the ISO System . . . . . . . . . . . . . . . . 192 11.3 System matrix of the IIO system . . . . . . . . . . . . . . . . 200 12 Realizations of F(s) 205 12.1 Dynamical and least dimension of a system . . . . . . . . . . 205 12.2 On realization and minimal realization . . . . . . . . . . . . . 208 12.2.1 Minimal realization of the transfer function matrix . . 208 12.2.2 Realizationandminimalrealizationofthefulltransfer function matrix and the system . . . . . . . . . . . . . 209 12.3 Realizations of F(s) of IO systems . . . . . . . . . . . . . . . 210 12.4 Realizations of F(s) of ISO systems . . . . . . . . . . . . . . 219 12.5 Realizations of F(s) of IIO systems . . . . . . . . . . . . . . . 233 III STABILITY STUDY 237 13 Lyapunov stability 239 13.1 Lyapunov stability concept . . . . . . . . . . . . . . . . . . . 239 13.2 Lyapunov stability definitions . . . . . . . . . . . . . . . . . . 242 13.2.1 IO systems . . . . . . . . . . . . . . . . . . . . . . . . 242 13.2.2 ISO systems . . . . . . . . . . . . . . . . . . . . . . . 253 13.2.3 IIO systems . . . . . . . . . . . . . . . . . . . . . . . . 261 13.3 Lyapunov method and theorems . . . . . . . . . . . . . . . . 275 13.3.1 Outline of Lyapunov’s original theory . . . . . . . . . 275 13.3.2 Lyapunov method, theorems and methodology for the linear systems . . . . . . . . . . . . . . . . . . . . . . . 277

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.