ebook img

Linear and Parametric Microphone Array Processing - =1=Part II PDF

113 Pages·2013·44.17 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Linear and Parametric Microphone Array Processing - =1=Part II

Linear and Parametric Microphone Array Processing Part II: Linear Spatial Processing Emanu¨el A.P. Habets1 and Sharon Gannot2 1InternationalAudioLaboratoriesErlangen,Germany 2FacultyofEngineering,Bar-IlanUniversity,Israel ICASSP 2013, Vancouver, Canada E.A.P.Habets(FAU)andS.Gannot(BIU) LinearandParametricMic.ArrayProc. ICASSP2013 1/113 Outline 1 Introduction 2 Array Processing Preliminaries 3 Problem Formulation 4 Optimal Beamforming Criteria & Solutions 5 The GSC Implementation 6 ATF & RTF Estimation 7 Postfilter 8 CTF vs. MTF 9 Dynamic Scenario 10 Binaural LCMV 11 The Speech and Acoustics Lab BIU 12 Bibliography E.A.P.Habets(FAU)andS.Gannot(BIU) LinearandParametricMic.ArrayProc. ICASSP2013 2/113 Introduction Literature Linear Spatial Noise Reduction Techniques I Families of Methods 1 Fixed beamforming Combine the microphone signals using a time-invariant filter-and-sum operation (data-independent) . [JanandFlanagan,1996];[DocloandMoonen,2003] 2 Blind Source Separation (BSS) Considers the received signals at the microphones as a mixture of all sound sources filtered by the RIRs. Utilizes Independent Component Analysis (ICA) techniques . [Makinoetal.,2007];TRINICON,[Buchneretal.,2004] 3 Adaptive Beamforming Combine the spatial focusing of fixed beamformers with adaptive suppression of (spectrally and spatially time-varying) background noise . Generalreading:[Coxetal.,1987];[VanVeenandBuckley,1988];[VanTrees,2002] E.A.P.Habets(FAU)andS.Gannot(BIU) LinearandParametricMic.ArrayProc. ICASSP2013 3/113 Introduction Literature Linear Spatial Noise Reduction Techniques II Some Criteria 1 Adaptive optimization [SondhiandElko,1986];[KanedaandOhga,1986]; . [BrandsteinandWard,2001] 2 Minimum variance distortionless response (MVDR) and GSC [VanCompernolle,1990];[AffesandGrenier,1997];[Nordholmetal.,1993];[Hoshuyamaetal.,1999]; . [Gannotetal.,2001];[Herbordt,2005];[GannotandCohen,2008] 3 Minimum mean square error (MMSE) - GSVD based spatial Wiener filter . [DocloandMoonen,2002a] 4 Speech distortion weighted multichannel Wiener filter (SDW-MWF) . [DocloandMoonen,2002b];[Sprietetal.,2004];[Docloetal.,2005] 5 Maximum signal to noise ratio (SNR) [WarsitzandHaeb-Umbach,2007]. 6 Linearly constrained minimum variance (LCMV) [Markovichetal.,2009]. E.A.P.Habets(FAU)andS.Gannot(BIU) LinearandParametricMic.ArrayProc. ICASSP2013 4/113 Introduction Literature Linear Spatial Noise Reduction Techniques III Some Books 1 Acoustic signal processing for telecommunication [GayandBenesty,2000]. 2 Microphone Arrays: Signal Processing Techniques and Applications . [BrandsteinandWard,2001] 3 Speech Enhancement [Benestyetal.,2005]. 4 Blind speech separation [Makinoetal.,2007]. 5 Microphone Array Signal Processing [Benestyetal.,2008a]. 6 Springer handbook of speech processing [Benestyetal.,2008b]. 7 Handbook on array processing and sensor networks [HaykinandLiu,2010]. 8 Speech processing in modern communication: Challenges and perspectives . [Cohenetal.,2010] E.A.P.Habets(FAU)andS.Gannot(BIU) LinearandParametricMic.ArrayProc. ICASSP2013 5/113 ArrayProcessingPreliminaries Spatial Filters Beamforming: Filter and Sum y(t) = wH(t)z(t). z t w 0 0 z t w 1 1  yt z t w M1 M1 w: M 1 beamforming vector of filters (or just gains). × E.A.P.Habets(FAU)andS.Gannot(BIU) LinearandParametricMic.ArrayProc. ICASSP2013 6/113 ArrayProcessingPreliminaries Array Processing Preliminaries Narrow-band Signal Far‐Field Wave stej0t M 1 (cid:88)− y(t) = w ejω0(t τm) m∗ − m=0 M 1  = ejω0t (cid:88)− wm∗e−jω0(dcocs(θ))m m=0 d M 1 zM1t z1t z0t = ejω0t (cid:88)− wm∗e−j2πλd0 cos(θ)m m=0 Beampattern is the DTFT of the weights (cid:16) (cid:17) y(t) = ejω0tW d ;cos(θ) λ0 E.A.P.Habets(FAU)andS.Gannot(BIU) LinearandParametricMic.ArrayProc. ICASSP2013 7/113 ArrayProcessingPreliminaries The Delay & Sum Beamformer Uniform Linear Array (ULA) w = 1 ; m = 0,...,M 1. m M − For simplicity, assume symmetric array. Steered to cos(θ ). 0 Beampattern: (cid:16) (cid:17) sin M2π d (cos(θ) cos(θ )) B(θ) = 1 2 λ0 − 0 (cid:16) (cid:17) M · sin 12π d (cos(θ) cos(θ )) 2 λ0 − 0 Beamformers Discriminate between angles. Can be steered by setting w. Depends on the ratio d . λ0 E.A.P.Habets(FAU)andS.Gannot(BIU) LinearandParametricMic.ArrayProc. ICASSP2013 8/113 ArrayProcessingPreliminaries Beampattern 90 1 90 1 90 1 120 60 120 60 120 60 0.8 0.8 0.8 0.6 0.6 0.6 150 30 150 30 150 30 0.4 0.4 0.4 0.2 0.2 0.2 180 0 180 0 180 0 210 330 210 330 210 330 240 300 240 300 240 300 270 270 270 (a) θ0=90o;λd0 = 12 (b) θ0=0o;λd0 = 21 (c) θ0=40o;λd0 = 12 90 1 90 1 120 60 120 60 0.8 0.8 0.6 0.6 150 30 150 30 0.4 0.4 0.2 0.2 180 0 180 0 210 330 210 330 240 300 240 300 270 270 (d) θ0=90o;λd0 = 312 (e) θ0=90o;λd0 = 41 E.A.P.Habets(FAU)andS.Gannot(BIU) LinearandParametricMic.ArrayProc. ICASSP2013 9/113 ArrayProcessingPreliminaries Additional Control on the Beampattern 0° 0 dB 315° −10 dB 45° −20 dB −30 dB 270° −40 dB 90° 225° 135° 180° 10 microphone uniform linear array. 2 Desired sources in green and 2 interfering sources in red. Can be obtained by applying the LCMV criterion. E.A.P.Habets(FAU)andS.Gannot(BIU) LinearandParametricMic.ArrayProc. ICASSP2013 10/113

Description:
Fixed beamforming Combine the microphone signals using a time-invariant Adaptive Beamforming Combine the spatial focusing of fixed beamformers with
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.