Linear and Parametric Microphone Array Processing Part II: Linear Spatial Processing Emanu¨el A.P. Habets1 and Sharon Gannot2 1InternationalAudioLaboratoriesErlangen,Germany 2FacultyofEngineering,Bar-IlanUniversity,Israel ICASSP 2013, Vancouver, Canada E.A.P.Habets(FAU)andS.Gannot(BIU) LinearandParametricMic.ArrayProc. ICASSP2013 1/113 Outline 1 Introduction 2 Array Processing Preliminaries 3 Problem Formulation 4 Optimal Beamforming Criteria & Solutions 5 The GSC Implementation 6 ATF & RTF Estimation 7 Postfilter 8 CTF vs. MTF 9 Dynamic Scenario 10 Binaural LCMV 11 The Speech and Acoustics Lab BIU 12 Bibliography E.A.P.Habets(FAU)andS.Gannot(BIU) LinearandParametricMic.ArrayProc. ICASSP2013 2/113 Introduction Literature Linear Spatial Noise Reduction Techniques I Families of Methods 1 Fixed beamforming Combine the microphone signals using a time-invariant filter-and-sum operation (data-independent) . [JanandFlanagan,1996];[DocloandMoonen,2003] 2 Blind Source Separation (BSS) Considers the received signals at the microphones as a mixture of all sound sources filtered by the RIRs. Utilizes Independent Component Analysis (ICA) techniques . [Makinoetal.,2007];TRINICON,[Buchneretal.,2004] 3 Adaptive Beamforming Combine the spatial focusing of fixed beamformers with adaptive suppression of (spectrally and spatially time-varying) background noise . Generalreading:[Coxetal.,1987];[VanVeenandBuckley,1988];[VanTrees,2002] E.A.P.Habets(FAU)andS.Gannot(BIU) LinearandParametricMic.ArrayProc. ICASSP2013 3/113 Introduction Literature Linear Spatial Noise Reduction Techniques II Some Criteria 1 Adaptive optimization [SondhiandElko,1986];[KanedaandOhga,1986]; . [BrandsteinandWard,2001] 2 Minimum variance distortionless response (MVDR) and GSC [VanCompernolle,1990];[AffesandGrenier,1997];[Nordholmetal.,1993];[Hoshuyamaetal.,1999]; . [Gannotetal.,2001];[Herbordt,2005];[GannotandCohen,2008] 3 Minimum mean square error (MMSE) - GSVD based spatial Wiener filter . [DocloandMoonen,2002a] 4 Speech distortion weighted multichannel Wiener filter (SDW-MWF) . [DocloandMoonen,2002b];[Sprietetal.,2004];[Docloetal.,2005] 5 Maximum signal to noise ratio (SNR) [WarsitzandHaeb-Umbach,2007]. 6 Linearly constrained minimum variance (LCMV) [Markovichetal.,2009]. E.A.P.Habets(FAU)andS.Gannot(BIU) LinearandParametricMic.ArrayProc. ICASSP2013 4/113 Introduction Literature Linear Spatial Noise Reduction Techniques III Some Books 1 Acoustic signal processing for telecommunication [GayandBenesty,2000]. 2 Microphone Arrays: Signal Processing Techniques and Applications . [BrandsteinandWard,2001] 3 Speech Enhancement [Benestyetal.,2005]. 4 Blind speech separation [Makinoetal.,2007]. 5 Microphone Array Signal Processing [Benestyetal.,2008a]. 6 Springer handbook of speech processing [Benestyetal.,2008b]. 7 Handbook on array processing and sensor networks [HaykinandLiu,2010]. 8 Speech processing in modern communication: Challenges and perspectives . [Cohenetal.,2010] E.A.P.Habets(FAU)andS.Gannot(BIU) LinearandParametricMic.ArrayProc. ICASSP2013 5/113 ArrayProcessingPreliminaries Spatial Filters Beamforming: Filter and Sum y(t) = wH(t)z(t). z t w 0 0 z t w 1 1 yt z t w M1 M1 w: M 1 beamforming vector of filters (or just gains). × E.A.P.Habets(FAU)andS.Gannot(BIU) LinearandParametricMic.ArrayProc. ICASSP2013 6/113 ArrayProcessingPreliminaries Array Processing Preliminaries Narrow-band Signal Far‐Field Wave stej0t M 1 (cid:88)− y(t) = w ejω0(t τm) m∗ − m=0 M 1 = ejω0t (cid:88)− wm∗e−jω0(dcocs(θ))m m=0 d M 1 zM1t z1t z0t = ejω0t (cid:88)− wm∗e−j2πλd0 cos(θ)m m=0 Beampattern is the DTFT of the weights (cid:16) (cid:17) y(t) = ejω0tW d ;cos(θ) λ0 E.A.P.Habets(FAU)andS.Gannot(BIU) LinearandParametricMic.ArrayProc. ICASSP2013 7/113 ArrayProcessingPreliminaries The Delay & Sum Beamformer Uniform Linear Array (ULA) w = 1 ; m = 0,...,M 1. m M − For simplicity, assume symmetric array. Steered to cos(θ ). 0 Beampattern: (cid:16) (cid:17) sin M2π d (cos(θ) cos(θ )) B(θ) = 1 2 λ0 − 0 (cid:16) (cid:17) M · sin 12π d (cos(θ) cos(θ )) 2 λ0 − 0 Beamformers Discriminate between angles. Can be steered by setting w. Depends on the ratio d . λ0 E.A.P.Habets(FAU)andS.Gannot(BIU) LinearandParametricMic.ArrayProc. ICASSP2013 8/113 ArrayProcessingPreliminaries Beampattern 90 1 90 1 90 1 120 60 120 60 120 60 0.8 0.8 0.8 0.6 0.6 0.6 150 30 150 30 150 30 0.4 0.4 0.4 0.2 0.2 0.2 180 0 180 0 180 0 210 330 210 330 210 330 240 300 240 300 240 300 270 270 270 (a) θ0=90o;λd0 = 12 (b) θ0=0o;λd0 = 21 (c) θ0=40o;λd0 = 12 90 1 90 1 120 60 120 60 0.8 0.8 0.6 0.6 150 30 150 30 0.4 0.4 0.2 0.2 180 0 180 0 210 330 210 330 240 300 240 300 270 270 (d) θ0=90o;λd0 = 312 (e) θ0=90o;λd0 = 41 E.A.P.Habets(FAU)andS.Gannot(BIU) LinearandParametricMic.ArrayProc. ICASSP2013 9/113 ArrayProcessingPreliminaries Additional Control on the Beampattern 0° 0 dB 315° −10 dB 45° −20 dB −30 dB 270° −40 dB 90° 225° 135° 180° 10 microphone uniform linear array. 2 Desired sources in green and 2 interfering sources in red. Can be obtained by applying the LCMV criterion. E.A.P.Habets(FAU)andS.Gannot(BIU) LinearandParametricMic.ArrayProc. ICASSP2013 10/113
Description: