ebook img

Linear Algebra with Applications PDF

527 Pages·2012·3.276 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Linear Algebra with Applications

Linear Algebra with Applications This page intentionally left blank Linear Algebra with Applications Fifth Edition Otto Bretscher Colby College EditorinChief:ChristineHoag CoverDesigner:SuzanneDuda SeniorAcquisitionsEditor:WilliamHoffman CoverArt:ColorizationbyJorgensen ExecutiveMarketingManager:JeffWeidenaar Fernandez/NASA MarketingAssistant:CaitlinCrain Full-ServiceProjectManagement: SeniorProductionProjectManager: IntegraSoftwareServices,Ltd. BethHouston Composition:IntegraSoftwareServices,Ltd. Manager,CoverVisual Printer/Binder:EdwardsBrothersMalloy ResearchandPermissions:JayneConte CoverPrinter:Lehigh/Phoenix The cover shows the Mars rover Curiosity, casting a long shadow onto Gale crater, facing Aeolis Mons. Linear Algebraplaysacentralroleinmanyaspectsoftheplanning,design,andcontrolofaspacemission.Forexample, datacompressionisusedforinterplanetarycommunication(seePage411),anderror-correctioncodesincreasethe reliabilityofdatatransmission(seePage121). Creditsandacknowledgmentsborrowedfromothersourcesandreproduced,withpermission,inthistextbookappear ontheappropriatepagewithintext. Copyright©2013,2009,2005byPearsonEducation,Inc.Allrightsreserved.ManufacturedintheUnitedStatesof America.ThispublicationisprotectedbyCopyright,andpermissionshouldbeobtainedfromthepublisherpriorto anyprohibitedreproduction,storageinaretrievalsystem,ortransmissioninanyformorbyanymeans,electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please submitawrittenrequesttoPearsonEducation,Inc.,PermissionsDepartment,OneLakeStreet,UpperSaddleRiver, NewJersey07458,oryoumayfaxyourrequestto201-236-3290. Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Wherethosedesignationsappearinthisbook,andthepublisherwasawareofatrademarkclaim,thedesignations havebeenprintedininitialcapsorallcaps. LibraryofCongressCataloging-in-PublicationData Bretscher,Otto. Linearalgebrawithapplications/OttoBretscher.–5thed. p.cm. Includesindex. ISBN-13:978-0-321-79697-4 ISBN-10:0-321-79697-7 1. Algebras,Linear–Textbooks.I.Title. QA184.2.B732013 512’.5–dc23 2012017551 10 9 8 7 6 5 4 3 2 1 EBM 16 15 14 13 12 ISBN-10: 0-321-79697-7 ISBN-13: 978-0-321-79697-4 To my parents Otto and Margrit Bretscher-Zwicky with love and gratitude This page intentionally left blank Contents Preface ix 1 Linear Equations 1 1.1 Introduction toLinearSystems 1 1.2 Matrices,Vectors,andGauss–JordanElimination 8 1.3 OntheSolutionsofLinearSystems;MatrixAlgebra 25 2 Linear Transformations 41 2.1 Introduction toLinearTransformationsandTheir Inverses 41 2.2 LinearTransformationsinGeometry 58 2.3 MatrixProducts 75 2.4 TheInverseofaLinearTransformation 88 3 Subspaces of Rn and Their Dimensions 110 3.1 ImageandKernelofaLinearTransformation 110 3.2 SubspacesofRn;BasesandLinearIndependence 122 3.3 TheDimensionofaSubspaceofRn 133 3.4 Coordinates 147 4 Linear Spaces 166 4.1 Introduction toLinearSpaces 166 4.2 LinearTransformationsandIsomorphisms 178 4.3 TheMatrixofaLinearTransformation 186 5 Orthogonality and Least Squares 202 5.1 Orthogonal ProjectionsandOrthonormal Bases 202 5.2 Gram–Schmidt ProcessandQRFactorization 218 5.3 Orthogonal TransformationsandOrthogonal Matrices 225 5.4 LeastSquaresandDataFitting 236 5.5 InnerProductSpaces 249 vii viii Contents 6 Determinants 265 6.1 Introduction toDeterminants 265 6.2 PropertiesoftheDeterminant 277 6.3 GeometricalInterpretations oftheDeterminant; Cramer’sRule 294 7 Eigenvalues and Eigenvectors 310 7.1 Diagonalization 310 7.2 FindingtheEigenvaluesofaMatrix 327 7.3 FindingtheEigenvectorsofaMatrix 339 7.4 MoreonDynamicalSystems 347 7.5 ComplexEigenvalues 360 7.6 Stability 375 8 Symmetric Matrices and Quadratic Forms 385 8.1 SymmetricMatrices 385 8.2 QuadraticForms 394 8.3 SingularValues 403 9 Linear Differential Equations 415 9.1 AnIntroduction toContinuousDynamicalSystems 415 9.2 TheComplex Case:Euler’sFormula 429 9.3 LinearDifferentialOperatorsandLinearDifferential Equations 442 AppendixAVectors 457 AppendixBTechniquesofProof 467 AnswerstoOdd-NumberedExercises 471 SubjectIndex 499 NameIndex 507 Preface (with David Steinsaltz) A police officer on patrol at midnight, so runs an old joke, notices a man crawling about on his hands and knees under a streetlamp. He walks over toinvestigate,whereuponthemanexplainsinatiredandsomewhatslurred voicethathehaslosthishousekeys.Thepolicemanofferstohelp,andforthenext five minutes he too is searching on his hands and knees. At last he exclaims, “Are youabsolutelycertainthatthisiswhereyoudroppedthekeys?” “Here? Absolutely not. I dropped them a block down, in the middle of the street.” “Thenwhythedevilhaveyougotmehuntingaroundthislamppost?” “Becausethisiswherethelightis.” Itismathematics,andnotjust(asBismarckclaimed)politics,thatconsistsin“the artofthepossible.”Ratherthansearchinthedarknessforsolutionstoproblemsof pressing interest, we contrive a realm of problems whose interest lies above all in thefactthatsolutionscanconceivablybefound. Perhapsthelargestpatchoflightsurroundsthetechniquesofmatrixarithmetic and algebra, and in particular matrix multiplication and row reduction. Here we mightbeginwithDescartes,sinceitwashewhodiscoveredtheconceptualmeeting- pointofgeometryandalgebraintheidentificationofEuclideanspacewithR3;the techniquesandapplicationsproliferatedsincehisday.Toorganizeandclarifythose istheroleofamodernlinearalgebracourse. Computers and Computation Anessentialissuethatneedstobeaddressedinestablishingamathematicalmethod- ologyistheroleofcomputationandofcomputingtechnology.Arethepropersub- jects of mathematics algorithms and calculations, or are they grand theories and abstractionsthatevadetheneedforcomputation?Iftheformer,isitimportantthat thestudentslearntocarryoutthecomputationswithpencilandpaper,orshouldthe algorithm“pressthecalculator’s x−1 button”beallowedtosubstituteforthetradi- tionalmethodoffindinganinverse?Ifthelatter,shouldtheabstractions betaught through elaborate notational mechanisms or through computational examples and graphs? Weseektotakeaconsistentapproachtothesequestions:Algorithmsandcom- putations are primary, and precisely for this reason computers are not. Again and again we examine the nitty-gritty of row reduction or matrix multiplication in or- dertoderivenewinsights.Mostoftheproofs,whetherofrank-nullitytheorem,the volume-change formula for determinants, or the spectral theorem for symmetric matrices,areinthiswaytiedtohands-onprocedures. The aim is not just to know how to compute the solution to a problem, but to imaginethecomputations.Thestudentneedstoperformenoughrowreductionsby handtobeequipped tofollow alineofargument oftheform: “Ifwecalculate the reducedrow-echelonformofsuchamatrix...,”andtoappreciateinadvancethe possibleoutcomesofaparticularcomputation. ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.