ebook img

Linear algebra thoroughly explained PDF

293 Pages·2008·3.549 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Linear algebra thoroughly explained

Linear Algebra Thoroughly Explained Milan Vujicˇic´ Linear Algebra Thoroughly Explained Author Editor MilanVujicˇic´ JeffreySanderson (1931–2005) EmeritusProfessor, SchoolofMathematics&Statistics, UniversityofStAndrews, StAndrews, Scotland ISBN:978-3-540-74637-9 e-ISBN:978-3-540-74639-3 LibraryofCongressControlNumber:2007936399 (cid:2)c 2008Springer-VerlagBerlinHeidelberg Thisworkissubjecttocopyright. Allrightsarereserved,whetherthewholeorpartofthematerial is concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyright LawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsare liabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. CoverDesign:eStudioCalamarS.L. Printedonacid-freepaper 9 8 7 6 5 4 3 2 1 springer.com Foreword Thereareazillionbooksonlinearalgebra,yetthisonefindsitsownuniqueplace among them. It starts as an introduction at undergraduatelevel, covers the essen- tial results at postgraduatelevel and reachesthe full power of the linear algebraic methodsneededbyresearchers,especiallythoseinvariousfieldsofcontemporary theoreticalphysics,appliedmathematicsandengineering.Atfirstsight,thetitleof thebookmayseemsomewhatpretentiousbutitfaithfullyreflectsitsobjectiveand, indeed,itsachievements. MilanVujicˇic´startedhisscientificcarrierintheoreticalnuclearphysicsinwhich he relied heavily in his research problemson linear algebraic and group theoretic methods. Subsequently,he movedto the field of grouptheory itself and its appli- cationsinvarioustopicsinphysics.Inparticular,heachieved,togetherwithFedor Herbut,importantresultsinthefoundationsofanddistantcorrelationsinquantum mechanics, where his understandingand skill in linear algebra was precedent.He wasknownasanacuteandlearnedmathematicalphysicist. AtfirstVujicˇic´ taughtgrouptheoryatgraduatelevel.However,histeachingca- reerblossomedwhenhemovedtothePhysicsFacultyoftheUniversityofBelgrade, anditcontinued,evenafterretirement,attheUniversityofMalta,wherehetaught linearalgebraatthemostbasicleveltoteachingdiplomastudents.Hecontinuously interestedhimselfintheproblemsofteaching,andwithworthyresults.Indeed,his didactic works were outstanding and he was frequently singled out by students, in their teaching evaluation questionnaires, as a superb teacher of mathematical physics. ThisbookisbasedonlecturesthatVujicˇic´ gavetobothundergraduateandpost- graduate students over a period of several decades. Its guiding principle is to de- velopthesubjectrigorouslybuteconomically,withminimalprerequisitesandwith plentyofgeometricintuition.Thebookoffersapracticalsystemofstudieswithan abundanceofworkedexamplescoordinatedinsuchawayastopermitthediligent studenttoprogresscontinuouslyfromthefirsteasylessonstoarealmasteryofthe subject.Throughoutthisbook,theauthorhassucceededinmaintainingrigourwhile givingthereaderanintuitiveunderstandingofthesubject.Hehasimbuedthebook with the same good sense and helpfulness that characterized his teaching during v vi Foreword hislifetime.Sadly,havingjustcompletedthebook,MilanVujicˇic´ suddenlydiedin December2005. HavingknownMilanwell,asmythesisadvisor,acolleagueandadearfriend,I amcertainthathewouldwishthisbooktobededicatedtohiswifeRadmilaandhis sonsBorisandAndrejfortheirpatience,supportandlove. Belgrade,July2007 DjordjeSˇijacˇki, Acknowledgements ThanksareduetoseveralpeoplewhohavehelpedinvariouswaystobringProfessor Vujicˇic´’s manuscript to publication. Vladislav Pavlovicˇ producedthe initial Latex copy,andsubsequently,Dr.PatriciaHeggieprovidedtimelyandinvaluabletechni- calhelpinthisarea.ProfessorsJohnCornwellandNikolaRuskucoftheUniversity of St. Andrewsread andmade helpfulcommentsuponthe manuscriptin the light of which Professor Milan Damnjanovicˇ of the University of Belgrade made some amendments.Finally,itisapleasuretothankProfessorDjordjeSˇijacˇkioftheUni- versityofBelgradeandtheSerbianAcademyofSciencesforwritingtheForeword. vii Contents 1 VectorSpaces.................................................. 1 1.1 Introduction ............................................... 1 1.2 GeometricalVectorsinaPlane ............................... 2 1.3 VectorsinaCartesian(Analytic)PlaneR2...................... 5 1.4 ScalarMultiplication(TheProductofaNumberwithaVector) .... 7 1.5 TheDotProductofTwoVectors(ortheEuclideanInnerProduct ofTwoVectorsinR2)....................................... 8 1.6 ApplicationsoftheDotProductandScalarMultiplication ........ 10 1.7 VectorsinThree-DimensionalSpace(SpatialVectors)............ 15 1.8 TheCrossProductinR3..................................... 18 1.9 The Mixed Triple Productin R3. Applicationsof the Cross andMixedProducts ........................................ 21 1.10 EquationsofLinesinThree-DimensionalSpace................. 24 1.11 EquationsofPlanesinThree-DimensionalSpace ................ 26 1.12 RealVectorSpacesandSubspaces ............................ 28 1.13 LinearDependenceandIndependence.SpanningSubsetsandBases 30 1.14 TheThreeMostImportantExamplesofFinite-DimensionalReal VectorSpaces.............................................. 33 1.14.1 TheVectorSpaceRn(NumberColumns) ................ 33 1.14.2 TheVectorSpaceRn×n(Matrices)...................... 35 1.14.3 TheVectorSpaceP (Polynomials) ..................... 37 3 1.15 SomeSpecialTopicsaboutMatrices........................... 39 1.15.1 MatrixMultiplication................................. 39 1.15.2 SomeSpecialMatrices................................ 40 A Determinants.................................................. 45 A.1 DefinitionsofDeterminants.................................. 45 A.2 PropertiesofDeterminants................................... 49 ix x Contents 2 LinearMappingsandLinearSystems ............................ 59 2.1 AShortPlanfortheFirst5SectionsofChapter2................ 59 2.2 SomeGeneralStatementsaboutMapping ...................... 60 2.3 TheDefinitionofLinearMappings(Linmaps) .................. 62 2.4 TheKernelandtheRangeofL ............................... 63 2.5 TheQuotientSpaceV /kerLandtheIsomorphismV /ker ∼=L(cid:2) ran L 65 n n 2.6 RepresentationTheory ...................................... 67 2.6.1 TheVectorSpaceLˆ(V ,W ) ........................... 68 n m 2.6.2 TheLinearMapM:Rn→Rm ......................... 69 2.6.3 TheThreeIsomorphismsv, wandv−w ................. 70 2.6.4 HowtoCalculatetheRepresentingMatrixM............. 72 2.7 AnExample(RepresentationofaLinmapWhichActsbetween VectorSpacesofPolynomials) ............................... 75 2.8 SystemsofLinearEquations(LinearSystems) .................. 79 2.9 TheFourTasks ............................................ 85 2.10 TheColumnSpaceandtheRowSpace ........................ 86 2.11 Two Examples of Linear Dependence of Columns andRowsofaMatrix ....................................... 88 2.12 ElementaryRowOperations(Eros)andElementaryMatrices...... 91 2.12.1 Eros ............................................... 91 2.12.2 ElementaryMatrices ................................. 93 2.13 TheGJFormofaMatrix .................................... 95 2.14 An Example (Preservation of Linear Independence andDependenceinGJForm)................................. 97 2.15 The Existence of the Reduced Row-Echelon (GJ) FormforEveryMatrix ...................................... 99 2.16 TheStandardMethodforSolvingAX¯ =b¯ .....................101 2.16.1 When Does a Consistent System AX¯ =b¯ Have aUniqueSolution?...................................102 2.16.2 WhenaConsistentSystemAX¯ =b¯ HasNo UniqueSolution .....................................108 2.17 TheGJMProcedure–aNewApproachtoSolvingLinearSystems withNonuniqueSolutions ...................................109 2.17.1 DetailedExplanation .................................110 2.18 SummaryofMethodsforSolvingSystemsofLinearEquations....116 3 Inner-ProductVectorSpaces(EuclideanandUnitarySpaces) .......119 3.1 EuclideanSpacesE ........................................119 n 3.2 UnitarySpacesU (orComplexInner-productVectorSpaces) .....126 n 3.3 Orthonormal Bases and the Gram-Schmidt Procedure forOrthonormalizationofBases ..............................131 3.4 DirectandOrthogonalSumsofSubspacesandtheOrthogonal ComplementofaSubspace ..................................139 3.4.1 DirectandOrthogonalSumsofSubspaces ...............139 3.4.2 TheOrthogonalComplementofaSubspace..............141 Contents xi 4 DualSpacesandtheChangeofBasis .............................145 ∗ 4.1 TheDualSpaceU ofaUnitarySpaceU ......................145 n n 4.2 TheAdjointOperator .......................................153 4.3 TheChangeofBasesinV (F)................................157 n 4.3.1 TheChangeoftheMatrix-ColumnξThatRepresents aVectorx¯∈V (F)(ContravariantVectors)...............158 n 4.3.2 The Change of then×nMatrix A ThatRepresents an Operator A∈Lˆ(V (F),V (F)) (Mixed Tensor n n oftheSecondOrder) .................................159 4.4 TheChangeofBasesinEuclidean(E )andUnitary(U )Vector n n Spaces....................................................162 4.5 The Change of Biorthogonal Bases in V∗(F) n (CovariantVectors) .........................................164 4.6 The Relation between V (F) and V∗(F) is Symmetric n n (TheInvariantIsomorphismbetweenV (F)andV∗∗(F))..........167 n n 4.7 Isodualism—TheInvariantIsomorphismbetweentheSuperspaces Lˆ(V (F),V (F))andLˆ(V∗(F),V∗(F)) .........................168 n n n n 5 TheEigenProblemorDiagonalFormofRepresentingMatrices.....173 5.1 Eigenvalues,Eigenvectors,andEigenspaces ....................173 5.2 DiagonalizationofSquareMatrices ...........................180 5.3 DiagonalizationofanOperatorinU ..........................183 n 5.3.1 TwoExamplesofNormalMatrices .....................188 5.4 TheActualMethodforDiagonalizationofaNormalOperator .....191 5.5 TheMostImportantSubsetsofNormalOperatorsinU ..........194 n 5.5.1 TheUnitaryOperatorsA†=A−1 .......................194 5.5.2 TheHermitianOperatorsA†=A .......................198 5.5.3 TheProjectionOperatorsP†=P=P2 ..................200 5.5.4 OperationswithProjectionOperators ...................203 5.5.5 TheSpectralFormofaNormalOperatorA...............207 5.6 DiagonalizationofaSymmetricOperatorinE .................208 3 5.6.1 TheActualProcedureforOrthogonalDiagonalization ofaSymmetricOperatorinE .........................214 3 5.6.2 DiagonalizationofQuadraticForms ....................218 5.6.3 ConicSectionsinR2 .................................220 5.7 CanonicalFormofOrthogonalMatrices .......................228 5.7.1 OrthogonalMatricesinRn ............................228 5.7.2 OrthogonalMatricesinR2 (RotationsandReflections).....229 5.7.3 The CanonicalFormsof OrthogonalMatricesin R3 (RotationsandRotationswithInversions)................240 6 TensorProductofUnitarySpaces................................243 6.1 KroneckerProductofMatrices ...............................243 6.2 AxiomsfortheTensorProductofUnitarySpaces................247 6.2.1 TheTensorproductofUnitarySpacesCmandCn .........247 xii Contents 6.2.2 Definition of the Tensor Productof Unitary Spaces, inAnalogywiththePreviousExample ..................249 6.3 MatrixRepresentationoftheTensorProductofUnitarySpaces ....250 6.4 MultipleTensorProductsofaUnitarySpaceU andofitsDual n ∗ SpaceU asthePrincipalExamplesoftheNotionofUnitary n Tensors ...................................................252 6.5 UnitarySpaceofAntilinearOperatorsLˆ (U ,U )astheMain a m n RealizationofU ⊗U ......................................254 m n 6.6 ComparativeTreatmentofMatrixRepresentationsof Linear Operatorsfrom Lˆ(U ,U ) and Antimatrix Representations m n ofAntilinearOperatorsfromLˆ (U ,U )=U ⊗U .............257 a m n m n 7 The Dirac Notation in Quantum Mechanics: Dualism between Unitary Spaces (Sect. 4.1) and Isodualism betweenTheirSuperspaces(Sect.4.7) ............................263 7.1 RepeatingtheStatementsabouttheDualismD..................263 7.2 Invariant Linear and Antilinear Bijections between theSuperspacesLˆ(U ,U )andLˆ(U∗,U∗) ......................266 n n n n 7.2.1 DualismbetweentheSuperspaces ......................266 7.2.2 IsodualismbetweenUnitarySuperspaces ................267 7.3 SuperspacesLˆ(U ,U ) Lˆ(U∗,U∗)astheTensorProductofU n n n n n andU∗,i.e.,U ⊗U∗........................................270 n n n ∗ 7.3.1 TheTensorProductofU andU .......................270 n n 7.3.2 RepresentationandtheTensorNatureofDiads ...........271 7.3.3 TheProofofTensorProductProperties..................272 7.3.4 DiadRepresentationsofOperators......................274 Bibliography.......................................................279 Index .............................................................281

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.