Linear Algebra Ideas and Applications FOURTH EDITION RICHARD C. PENNEY LINEAR ALGEBRA LINEAR ALGEBRA Ideas and Applications Fourth Edition RICHARD C. PENNEY PurdueUniversity Copyright©2016byJohnWiley&Sons,Inc.Allrightsreserved. PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey. PublishedsimultaneouslyinCanada. Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformor byanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptas permittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,withouteithertheprior writtenpermissionofthePublisher,orauthorizationthroughpaymentoftheappropriateper-copyfeeto theCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers,MA01923,(978)750-8400,fax (978)646-8600,oronthewebatwww.copyright.com.RequeststothePublisherforpermissionshould beaddressedtothePermissionsDepartment,JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ 07030,(201)748-6011,fax(201)748-6008. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsin preparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyor completenessofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysales representativesorwrittensalesmaterials.Theadviceandstrategiescontainedherinmaynotbesuitable foryoursituation.Youshouldconsultwithaprofessionalwhereappropriate.Neitherthepublishernor authorshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedto special,incidental,consequential,orotherdamages. ForgeneralinformationonourotherproductsandservicespleasecontactourCustomerCare DepartmentwiththeU.S.at877-762-2974,outsidetheU.S.at317-572-3993orfax317-572-4002. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprint, however,maynotbeavailableinelectronicformat. LibraryofCongressCataloging-in-PublicationData: Penney,RichardC. Linearalgebra:ideasandapplications/RichardPenney.–Fourthedition. pagescm Includesindex. ISBN978-1-118-90958-4(cloth) 1.Algebras,Linear–Textbooks. I.Title. QA184.2.P462015 512′.5–dc23 2015016650 PrintedintheUnitedStatesofAmerica. 10 9 8 7 6 5 4 3 2 1 CONTENTS PREFACE XI FEATURESOFTHETEXT XIII ACKNOWLEDGMENTS XVII ABOUTTHECOMPANIONWEBSITE XIX 1 SYSTEMSOFLINEAREQUATIONS 1 1.1 TheVectorSpaceofm×nMatrices / 1 TheSpaceRn / 4 LinearCombinationsandLinearDependence / 6 WhatisaVectorSpace? / 11 Exercises / 17 1.1.1 ComputerProjects / 22 1.1.2 ApplicationstoGraphTheoryI / 25 Exercises / 27 1.2 Systems / 28 Rank:TheMaximumNumberofLinearlyIndependent Equations / 35 Exercises / 38 1.2.1 ComputerProjects / 41 1.2.2 ApplicationstoCircuitTheory / 41 Exercises / 46 v vi CONTENTS 1.3 GaussianElimination / 47 SpanninginPolynomialSpaces / 58 ComputationalIssues:Pivoting / 61 Exercises / 63 ComputationalIssues:CountingFlops / 68 1.3.1 ComputerProjects / 69 1.3.2 ApplicationstoTrafficFlow / 72 1.4 ColumnSpaceandNullspace / 74 Subspaces / 77 Exercises / 86 1.4.1 ComputerProjects / 94 ChapterSummary / 95 2 LINEARINDEPENDENCEANDDIMENSION 97 2.1 TheTestforLinearIndependence / 97 BasesfortheColumnSpace / 104 TestingFunctionsforIndependence / 106 Exercises / 108 2.1.1 ComputerProjects / 113 2.2 Dimension / 114 Exercises / 123 2.2.1 ComputerProjects / 127 2.2.2 ApplicationstoDifferentialEquations / 128 Exercises / 131 2.3 RowSpaceandtherank-nullitytheorem / 132 BasesfortheRowSpace / 134 ComputationalIssues:ComputingRank / 142 Exercises / 143 2.3.1 ComputerProjects / 146 ChapterSummary / 147 3 LINEARTRANSFORMATIONS 149 3.1 TheLinearityProperties / 149 Exercises / 157 3.1.1 ComputerProjects / 162 3.2 MatrixMultiplication(Composition) / 164 PartitionedMatrices / 171 ComputationalIssues:ParallelComputing / 172 CONTENTS vii Exercises / 173 3.2.1 ComputerProjects / 178 3.2.2 ApplicationstoGraphTheoryII / 180 Exercises / 181 3.3 Inverses / 182 ComputationalIssues:ReductionversusInverses / 188 Exercises / 190 3.3.1 ComputerProjects / 195 3.3.2 ApplicationstoEconomics / 197 Exercises / 202 3.4 TheLUFactorization / 203 Exercises / 212 3.4.1 ComputerProjects / 214 3.5 TheMatrixofaLinearTransformation / 215 Coordinates / 215 Isomorphism / 228 InvertibleLinearTransformations / 229 Exercises / 230 3.5.1 ComputerProjects / 235 ChapterSummary / 236 4 DETERMINANTS 238 4.1 DefinitionoftheDeterminant / 238 4.1.1 TheRestoftheProofs / 246 Exercises / 249 4.1.2 ComputerProjects / 251 4.2 ReductionandDeterminants / 252 UniquenessoftheDeterminant / 256 Exercises / 258 4.2.1 Volume / 261 Exercises / 263 4.3 AFormulaforInverses / 264 Exercises / 268 ChapterSummary / 269 5 EIGENVECTORSANDEIGENVALUES 271 5.1 Eigenvectors / 271 Exercises / 279 viii CONTENTS 5.1.1 ComputerProjects / 282 5.1.2 ApplicationtoMarkovProcesses / 283 Exercises / 285 5.2 Diagonalization / 287 PowersofMatrices / 288 Exercises / 290 5.2.1 ComputerProjects / 292 5.2.2 ApplicationtoSystemsofDifferentialEquations / 293 Exercises / 295 5.3 ComplexEigenvectors / 296 ComplexVectorSpaces / 303 Exercises / 304 5.3.1 ComputerProjects / 305 ChapterSummary / 306 6 ORTHOGONALITY 308 6.1 TheScalarProductinRN / 308 Orthogonal/OrthonormalBasesandCoordinates / 312 Exercises / 316 6.2 Projections:TheGram-SchmidtProcess / 318 TheQRDecomposition / 325 UniquenessoftheQRFactorization / 327 Exercises / 328 6.2.1 ComputerProjects / 331 6.3 FourierSeries:ScalarProductSpaces / 333 Exercises / 341 6.3.1 ApplicationtoDataCompression:Wavelets / 344 Exercises / 352 6.3.2 ComputerProjects / 353 6.4 OrthogonalMatrices / 355 HouseholderMatrices / 361 Exercises / 364 DiscreteWaveletTransform / 367 6.4.1 ComputerProjects / 369 6.5 LeastSquares / 370 Exercises / 377 6.5.1 ComputerProjects / 380
Description: