ebook img

Linear Algebra [draft] PDF

371 Pages·2015·1.147 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Linear Algebra [draft]

Henry C. Pinkham Linear Algebra July10,2015 Springer Preface Thisisatextbookforatwo-semestercourseonLinearAlgebra.Althoughthepre- requisitesforthisbookareasemesterofmultivariablecalculus,inrealityeverything isdevelopedfromscratchandmathematicalmaturityistherealprerequisite.Tradi- tionallylinearalgebraisthefirstcourseinthemathcurriculumwherestudentsare askedtounderstandproofs,andthisbookemphasizesthispoint:itgivestheback- groundtohelpstudentsunderstandproofsandgivesfullproofsforallthetheorems inthebook. Whywriteatextbookforatwosemestercourse?Firstsemestertextbookstend to focus exclusively on matrices and matrix manipulation, while second semester textbookstendtodismissmatricesasinferiortools.Thissegregationofmatrixtech- niques on one hand, and linear transformations of the other tends to obscure the intimaterelationshipbetweenthetwo. Students can enjoy the book without understanding all the proofs, as many nu- mericallyexamplesillustratealltheconcepts. As is the case for most elementary textbooks on linear algebra, we only study finitedimensionalvectorspacesandrestrictthescalarstorealorcomplexnumbers. Weemphasizecomplexnumbersandhermitianmatrices,sincethecomplexcaseis essential in understanding the real case. However, whenever possible, rather than writing one proof for the hermitian case that also works for the real symmetric case, they are treated in separate sections, so the student who is mainly interested intherealcase,andknowslittleaboutcomplexnumbers,canreadon,skippingthe sectionsdevotedtothecomplexcase. Wespend moretimethat usualinstudying systemsoflinear equationswithout using the matrix technology. This allows for flexibility that one loses when using matrices. We take advantage of this work to study families of linear inequalities, whichisusefulfortheoptionalchapteronconvexityandoptimizationattheendof thebook. Inthesecondchapter,westudymatricesandGaussianeliminationintheusual way,whilecomparingwitheliminationinsystemsofequationsfromthefirstchap- ter. We also spend more time than usual on matrix multiplication: the rest of the bookshowshowessentialitistounderstandinglinearalgebra. v vi Then we study vector spaces and linear maps. We give the classical definition oftherankofamatrix:thelargestsizeofanon-singularsquaresubmatrix,aswell asthestandardones.Wealsoproveotherclassicresultsonmatricesthatareoften omitted in recent textbooks. We give a complete change of basis presentation in Chapter5. In a portion of the book that can be omitted on first reading, we study duality andgeneralbilinearforms.Thenwestudyinner-productspaces:vectorspaceswith apositivedefinitescalar(orhermitian)product),intheusualway.Weintroducethe inner product late, because it is an additional piece of structure on a vector space. Wereplaceitbydualityintheearlyargumentswhereitcanbeused. Nextwestudylinearoperatorsoninnerproductspace,alinearoperatorbeinga lineartransformationfromavectorspacetoitself,westudyimportantspeciallinear operators:symmetric,hermitian,orthogonalandunitaryoperatrps,dealingwiththe realandthecomplexoperatorsseparatelyFinallywedefinenormaloperators. Thenwiththegoalofclassifyinglinearoperatorswedeveloptheimportantno- tionofpolynomialsofmatrices.Theelementarytheoryofpolynomialsinonevari- able, that most students will have already seen, is reviewed in an appendix. This leadsustotheminimalpolynomialofalinearoperator,whichallowsustoestablish theJordannormalforminboththecomplexandrealcase. Onlythendoweturntodeterminants.Thisbookshowshowmuchoftheelemen- tarytheorycanbedonewithoutdeterminants,justusingtherankandothersimilar tools.Ourpresentationofdeterminantsisbuiltonpermutations,andourdefinition istheLeibnitzformulaintermsofpermutations.Wethenestablishallthefamiliar theoremsondeterminants,butgoalittlefurther:westudytheadjugatematrixand provetheclassicCauchy-Binettheorem. Next we study the characteristic polynomial of a linear operator, and prove the Cayley-Hamilton theorem. We establish the classic meaning of all the coefficients ofthecharacteristicpolynomial,notjustthedeterminantandthetrace. We conclude with the Spectral Theorem, the most important theorem of linear algebra. We have a few things to say about the importance of the computations of eigenvaluesandeigenvectors.Wederivealltheclassictestsforpositivedefiniteand positivesemidefinitematrices. Nextthereisanoptionalchapteronpolytopes,polyhedraandconvexity,anatural outgrowth of our study of inequalities in the first chapter. This only involves real linearalgebra. Finally, there is a chapter on the usefulness of linear algebra in the study of difference equations and linear ordinary differential equations. This only uses real linearalgebra. There are three appendices. the first is the summary of the notation used in the boof;thesecondgivessomemathematicalbackgroundthatoccasionallyprovesuse- ful,especiallythereviewofcomplexnumbers.Thelastappendixonpolynomialsis veryimportantifyouhavenotseenthematerialinitbefore.Extensiveuseofitis madeinthestudyoftheminimalpolynomial. Leitfaden Thereareseveralpathwaysthroughthebook. vii 1. Many readers with have seen the material of the first three sections of Chapter 1; Chapters 2, 3, 4 and 5 form the core of the book and should be read care- fully by everyone. I especially recommend a careful reading of the material on matrixmultiplicationinChapter2,sincemanyoftheargumentslaterondepend essentiallyonagoodknowledgeofit. 2. Chapter6onduality,andChapter7onbilinearformsformanindependentsec- tionthatcanbeskippedinaonesemestercourse. 3. Chapter 8 studies what we call inner-product spaces: either real vector spaces with a positive definite scalar product or complex vector spaces with a positive definitehermitianproduct.Thisbeginsourstudyofvectorspacesequippedwith a new bit of structure: an inner product. Chapter 9 studies operators on an in- ner product space. First it shows how to write all of them, and then it studies thosethathaveaspecialstructurewithrespecttotheinnerproduct.Asalready mentioned,thematerialforrealvectorspacesispresentedindependentlyforthe readerwhowantstofocusonrealvectorspaces.Thesetwochapterareessential. 4. In Chapter 9, we go back to the study of vector spaces without an inner prod- uct.Thegoalistounderstandalloperators,soinfactlogicallythiscouldcome before the material on operators on inner product spaces. After an introduction of the goals of the chapter, the theory of polynomials of matrices is developed. My goal is to convince the reader that there is nothing difficult here. The key result is the existence of the minimal polynomial of an operator. Then we can provetheprimarydecompositionandtheJordancanonicalform,whichallowus to decompose any linear operator into smaller building blocks that are easy to analyze. 5. Finally we approach the second main objective of linear algebra: the study of theeigenvaluesandeigenvectorsofalinearoperator.Thisisdoneinthreesteps. FirstthedeterminantinChapter11,thenthecharacteristicpolynomialinChapter 12,andfinallythespectraltheoreminChapter13.Inthechapterconcerningthe spectral theorem we use the results on inner products and special operators of chapters 8 and 9 for the first time. It is essential to get to this material in a one semestercourse, whichmay requireskipping items2 and4.Some applications showtheimportanceofeigenvectorcomputation. 6. Chapter13coversthemethodofleastsquares,oneofthemostimportantappli- cationsoflinearalgebra.Thisisoptionalforaone-semestercourse. 7. Chapter14,anotheroptionalchapterconsidersfirstanobviousgeneralizationof linearalgebra:affinegeometry.Thisisusefulindevelopingthetheoryofiinear inequalities.Fromthereisanasmallsteptogettothebeautifultheoryofconvex- ity,withanemphasisonthecomplexbodiesthatcomefromlinearinequalities: polyhedraandpolytopes.Thisisidealforthesecondsemesterofalinearalgebra course,orforaone-semestercoursethatonlystudiesreallinearalgebra. 8. Finally the material on systems of differential equations forms a good applica- tionsforstudentswhoarefamiliarwithmultivariablecalculus. 9. Therearethreeappendices:firstacatalogofthenotationsystemused,thenabrief reviewofsomemathematics,includingcomplexnumbers,andwhatismostim- viii portantforus,therootsofpolynomialswithrealorcomplexcoefficients.Finally thelastappendixcarefullyreviewspolynomialsinonevariable. RecommendedBooks Likegenerationsofwritersoflinearalgebratextbooksbeforeme,Imustdisclaim anyoriginalityintheestablishmentoftheresultsofthisbook,mostofwhichareat least a century old. Here is a list of texts that I have found very helpful in writing thisbookandthatIrecommend. • Onthematrixside,Irecommendthreebooks: Gantmacher’sclassictwovolumetext[8],verythoroughandperhapssomewhat hardtoread; Franklin’sconciseandclearbook[6]. DenisSerre’sbeautifulbook[24],veryconciseandelegant. HornandJohnson’sencyclopedictreatmentofofmatrices[13],whichalsoshows howmatricesandanalysiscanbeinterwoven. • OnthelinearalgebrasideanexcellentexampleofanoldertextbookisMinsky. Morerecentlythereis[12]-verycomplete. • TheclassictextbookontheabstractsideisHalmos’sbook[10].Forthosewho wanttogoevenfurtherinseeinghowlinearalgebraisthefirststepinstudying “abstractalgebra”,MichaelArtin’stext[1]isrecommended,sinceheuseslinear algebraasthefirstbuildingblocktoabstractalgebra. • Linearalgebraisveryusefulinstudyingadvancedgeometry.Anexcellentbook that quite unusually combines the linear algebra with the geometry is Shafare- vich.EvenmoreadvancedisManin’sbook. • Therearetwogoodself-described“secondsemester”linearalgebratexts:Serge Lang’sbook[15]whichsuffersfromitsseparationfromhismoreelementarytext thatdevelopsthematrixtechniques,andthenSheldonAxler’sbeautifullywritten book[2]. • Finallytherearebooksthatfocusonthecomputationalside.Itisbecauselinear algebraalgorithmscanbeimplementedoncomputersisacentralreasonthatlin- earalgebrahascometooccupyacentralpositioninthemathematicscurriculum. Wedonotdomuchofthatinthisbook.TheclassictextisGolub-VanLoan[9]. Therearebookscompletelydevotedtothecomputationofeigenvectors. Comments,corrections,andothersuggestionsforimprovingthesenotesarewel- [email protected]. HENRYC.PINKHAM NewYork,NY DraftofJuly10,2015 Contents 1 LinearEquations .............................................. 1 1.1 LinearEquations ........................................... 1 1.2 GeometryInterpretation ..................................... 5 1.3 Elimination ............................................... 6 1.4 ExamplesofElimination .................................... 10 1.5 ConsequencesofLinearSystems ............................. 15 1.6 DiagonallyDominantSystems ............................... 16 1.7 History ................................................... 17 2 Matrices ...................................................... 21 2.1 Matrices .................................................. 21 2.2 MatrixMultiplication ....................................... 24 2.3 SquareMatrices............................................ 28 2.4 Submatrices ............................................... 32 2.5 GaussianEliminationinMatrixNotation....................... 33 2.6 ReducedRow–EchelonForm................................. 37 2.7 SolvingLinearSystemsofEquations .......................... 38 2.8 ElementaryMatrices........................................ 40 2.9 BlockDecompositionofMatrices............................. 45 2.10 ColumnOperations......................................... 49 3 VectorSpaces.................................................. 51 3.1 Scalars ................................................... 51 3.2 VectorSpaces.............................................. 52 3.3 Subspaces................................................. 55 3.4 Bases..................................................... 58 3.5 Dimension ................................................ 61 3.6 ProductsandDirectSums ................................... 63 ix x Contents 4 LinearMaps................................................... 65 4.1 LinearMaps............................................... 65 4.2 TheNullspaceandtheRangeofaLinearMap .................. 68 4.3 CompositionofLinearMaps ................................. 72 4.4 LinearOperators ........................................... 75 4.5 InvertibleLinearMaps ...................................... 76 4.6 Projections ................................................ 77 5 RepresentingLinearMapsbyMatrices........................... 81 5.1 TheMatrixofaLinearMap.................................. 81 5.2 TheLinearMapofaMatrix.................................. 83 5.3 ChangeofBasis............................................ 84 5.4 EquivalentLinearMaps ..................................... 87 5.5 EquivalentLinearOperators ................................. 88 5.6 TheRankofaMatrix ....................................... 90 5.7 MoreonLinearEquations ................................... 93 5.8 RealandComplexLinearMaps .............................. 95 5.9 NilpotentOperators......................................... 98 5.10 TheRankviaSubmatrices ...................................101 6 Duality........................................................107 6.1 TheDualSpace ............................................107 6.2 Application:LagrangeInterpolation ...........................109 6.3 BilinearForms:theGeneralCase .............................112 6.4 Annihilators ...............................................113 6.5 TheDoubleDual...........................................115 6.6 Duality ...................................................117 7 BilinearForms.................................................121 7.1 BilinearForms.............................................121 7.2 QuadraticForms ...........................................125 7.3 DecompositionofaSymmetricBilinearForm...................127 7.4 DiagonalizationofSymmetricBilinearForms...................129 7.5 Lagrange’sDiagonalizationAlgorithm.........................130 7.6 SkewSymmetricLinearForms ...............................132 7.7 SylvestersLawofInertia ....................................133 7.8 HermitianForms ...........................................138 7.9 DiagonalizationofHermitianForms...........................141 8 InnerProductSpaces...........................................143 8.1 ScalarProducts ............................................143 8.2 TheGeometryofEuclideanSpaces............................146 8.3 Gram-SchmidtOrthogonalization .............................149 8.4 OrthogonalProjectioninEuclideanSpaces .....................154 8.5 SolvingtheInconsistentInhomogeneousSystem ................156 8.6 HermitianProducts .........................................159 Contents xi 8.7 TheGeometryofHermitianSpaces ...........................160 8.8 ScalarProductonSpacesofMatrices..........................162 9 OperatorsonInnerProductSpaces ..............................167 9.1 AdjointsonRealSpacesandSymmetricMatrices ...............167 9.2 AdjointsforHermitianProductsandHermitianMatrices..........170 9.3 PositiveDefiniteOperatorsandMatrices .......................173 9.4 OrthogonalOperators .......................................174 9.5 UnitaryOperators ..........................................176 9.6 NormalOperators ..........................................177 9.7 TheFourSubspaces ........................................178 10 TheMinimalPolynomial........................................181 10.1 LinearOperators:theProblem................................181 10.2 PolynomialsofMatrices.....................................184 10.3 TheMinimalPolynomial ....................................186 10.4 CyclicVectors .............................................189 10.5 ThePrimaryDecompositionTheorem .........................191 10.6 TheJordanCanonicalForm..................................193 10.7 UniquenessoftheJordanForm ...............................195 10.8 TheJordanFormovertheRealNumbers.......................197 10.9 AnApplicationoftheJordanCanonicalForm...................197 11 TheDeterminant...............................................199 11.1 Permutations ..............................................199 11.2 PermutationMatrices .......................................202 11.3 PermutationsandtheDeterminant.............................206 11.4 PropertiesoftheDeterminant ................................210 11.5 TheLaplaceExpansion......................................213 11.6 Cramer’sRule .............................................217 11.7 TheAdjugateMatrix........................................218 11.8 TheCauchy-BinetTheorem..................................219 11.9 GaussianEliminationviaDeterminants ........................221 11.10DeterminantsandVolumes...................................224 11.11TheBirkhoff-KoenigTheorem ...............................225 12 TheCharacteristicPolynomial...................................227 12.1 TheCharacteristicPolynomial................................227 12.2 TheMultiplicityofEigenvalues...............................230 12.3 TheTraceandtheDeterminant ...............................231 12.4 TheCayley-HamiltonTheorem...............................232 12.5 TheSchurUnitaryTriangularizationTheorem ..................233 12.6 TheCharacteristicPolynomialoftheCompanionMatrix..........235 12.7 TheMinorsofaSquareMatrix ...............................237 12.8 ComputationofEigenvectors.................................238 12.9 TheBigPicture ............................................238 xii Contents 12.10TheCoefficientsoftheCharacteristicPolynomial ...............238 13 TheSpectralTheorem ..........................................243 13.1 TriangulationofComplexOperators...........................243 13.2 TheRayleighQuotient ......................................244 13.3 TheSpectralTheorem.......................................246 13.4 TheSpectralTheoremforSelf-AdjointOperators................249 13.5 PositiveDefiniteMatrices ...................................250 13.6 TheSpectralTheoremforUnitaryOperators....................257 13.7 TheSpectralTheoremforOrthogonalOperators.................257 13.8 TheSpectralTheoremforNormalOperators....................259 13.9 ThePolarDecomposition....................................261 13.10TheSingularValueDecomposition............................262 14 TheMethodofLeastSquares....................................265 14.1 TheMethodofLeastSquares ................................265 14.2 FittingtoaLine............................................266 14.3 ConnectiontoStatistics .....................................269 14.4 OrthogonalLeastSquares....................................273 14.5 ComputationalTechniquesinLeastSquares ....................275 15 LinearInequalitiesandPolyhedra ...............................277 15.1 AffineGeometry ...........................................277 15.2 SystemsofLinearInequalitiesandPolyhedra ...................283 15.3 ConvexSets ...............................................290 15.4 PolyhedraandPolytopes ....................................297 15.5 Carathe´odory’sTheorem ....................................300 15.6 Minkowski’sTheorem ......................................301 15.7 PolarityforConvexSets.....................................304 16 LinearDifferentialEquations ...................................309 16.1 DifferentialCalculusReview.................................309 16.2 Examples .................................................310 16.3 TheGeneralCase ..........................................313 16.4 SystemsofFirstOrderDifferentialEquations ...................314 16.5 EigenvectorComputationsforLinearODE .....................315 16.6 DifferenceEquations .......................................315 A Notation ......................................................317 A.1 Generalities ...............................................317 A.2 RealandComplexVectorSpaces .............................317 A.3 Matrices ..................................................318 A.4 LinearTransformations......................................319

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.