Linear Algebra Maths 270 c (cid:13) DavidA.SANTOS Community College of Philadelphia: SPRING 2004 March 3, 2004 Revision Contents Preface v 1 Preliminaries 1 1.1 SetsandNotation. . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 PartitionsandEquivalenceRelations . . . . . . . . . . . . . . 5 1.3 BinaryOperations . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 n 1.5 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 MatricesandMatrixOperations 25 2.1 TheAlgebraofMatrices . . . . . . . . . . . . . . . . . . . . . . 25 2.2 MatrixMultiplication . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3 TraceandTranspose . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4 SpecialMatrices . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.5 MatrixInversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.6 BlockMatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.7 RankofaMatrix. . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.8 RankandInvertibility . . . . . . . . . . . . . . . . . . . . . . . . 69 3 LinearEquations 79 3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.2 ExistenceofSolutions. . . . . . . . . . . . . . . . . . . . . . . . 84 3.3 ExamplesofLinearSystems . . . . . . . . . . . . . . . . . . . . 86 4 R2,R3 andRn 93 4.1 PointsandBi-pointsinR2 . . . . . . . . . . . . . . . . . . . . . 93 4.2 VectorsinR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.3 DotProductinR2 . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.4 LinesonthePlane . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.5 VectorsinR3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 iii iv CONTENTS 4.6 PlanesandLinesinR3 . . . . . . . . . . . . . . . . . . . . . . . 126 4.7 Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5 VectorSpaces 137 5.1 VectorSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.2 VectorSubspaces . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.3 LinearIndependence . . . . . . . . . . . . . . . . . . . . . . . 145 5.4 SpanningSets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.5 Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.6 Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 6 LinearTransformations 167 6.1 LinearTransformations . . . . . . . . . . . . . . . . . . . . . . . 167 6.2 KernelandImageofaLinearTransformation . . . . . . . . . 170 6.3 MatrixRepresentation . . . . . . . . . . . . . . . . . . . . . . . 174 7 Determinants 183 7.1 Permutations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 7.2 CycleNotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 7.3 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 7.4 LaplaceExpansion . . . . . . . . . . . . . . . . . . . . . . . . . 205 7.5 DeterminantsandLinearSystems . . . . . . . . . . . . . . . . 213 8 EigenvaluesandEigenvectors 215 8.1 SimilarMatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 8.2 EigenvaluesandEigenvectors . . . . . . . . . . . . . . . . . . 216 8.3 Diagonalisability . . . . . . . . . . . . . . . . . . . . . . . . . . 221 A SomeAnswersandHints 227 Preface These notes started during the Spring of 2002, when John MAJEWICZ andIeachtaughtasectionofLinearAlgebra. Iwouldliketothankhim fornumeroussuggestionsonthewrittennotes. The students of my class were: Craig BARIBAULT, Chun CAO, Jacky CHAN, Pho DO, Keith HARMON, Nicholas SELVAGGI, Sanda SHWE, and HuongVU. John’s students were David HERNÁNDEZ, Adel JAILILI, Andrew KIM, JongKIM,AbdelmounaimLAAYOUNI,AjuMATHEW,NikitaMORIN,Thomas NEGRÓN,LatoyaROBINSON,andSaemSOEURN. LinearAlgebraisoftenastudent’sfirstintroductiontoabstractmath- ematics. LinearAlgebraiswellsuitedforthis,asithasanumberofbeau- tifulbutelementaryandeasytoprovetheorems. Mypurposewiththese notes is to introduce students to the concept of proof in a gentle man- ner. DavidA.SANTOS ThisdocumentwaslastrevisedonMarch3,2004. v Thingsdone: ˚ RewrotethechapteronR2,R3,Rn ¸ Rewrotethesectiononcoordinates. (cid:204) Addedmoreexercises. Now,cananyone,fromanywhereintheworld,helpmewiththis? Thingstodo: ˚ Writeasectiononbarycentresindimension2. ¸ ProveCeva’sandMenelaus’Theoremsusingbarycentres. (cid:204) Writeasectiononisometries. ˝ Writeasectiononpositive-definitematrices. ˛ Writeasectiononquadrics. ˇ Drawmorediagrams. — Writeasectiononsumsofsubspaces. 1 Chapter Preliminaries 1.1 Sets and Notation 1 Definition Wewillmeanbyasetacollectionofwelldefinedmembers orelements. 2 Definition Thefollowingsetshavespecialsymbols. N={0,1,2,3,...} denotesthesetofnaturalnumbers. Z={...,−3,−2,−1,0,1,2,3,...} denotesthesetofintegers. Q denotesthesetofrationalnumbers. R denotesthesetofrealnumbers. C denotesthesetofcomplexnumbers. ∅ denotestheemptyset. 3 Definition(Implications) The symbol = is read “implies”, and the symbol isread“ifandonlyif.” ⇒ 4 Exam⇐pl⇒e Prove that between any two rational numbers there is al- waysarationalnumber. Solution: Let(a,c) Z2,(b,d) (N\{0})2, a < c. Thenda<bc. Now ∈ ∈ b d a a+c ab+ad<ab+bc = a(b+d)<b(a+c) = < , b b+d ⇒ 1 ⇒ 2 Chapter1 a+c c da+dc<cb+cd = d(a+c)<c(b+d) = < , b+d d a+c whencetherationalnumb⇒er liesbetween a⇒and c. b+d b d ! Wecanalsoarguethattheaverageoftwodistinctnumbersliesbetweenthe numbersandsoifr1 <r2arerationalnumbers,then r1+2r2 liesbetweenthem. 5 Definition LetAbeaset. IfabelongstothesetA,thenwewritea A, ∈ read “a is an element of A.” If a does not belong to the set A, we write a A,read“aisnotanelementofA.” 6∈ 6 Definition(Conjunction,Disjunction,andNegation) Thesymbol∨isread “or” (disjunction), the symbol ∧ is read “and” (conjunction), and the symbol¬isread“not.” 7 Definition(Quantifiers) Thesymbol isread“forall”(theuniversalquan- ∀ tifier),andthesymbol isread“thereexists”(theexistentialquantifier). ∃ Wehave ¬( x A,P(x)) ( A,¬P(x)) (1.1) ∀ ∈ ∃∈ ⇐⇒ ¬( A,P(x)) ( x A,¬P(x)) (1.2) ∃∈ ∀ ∈ 8 Definition(Subset) If a A w⇐e⇒have a B, then we write A B, ∀ ∈ ∈ ⊆ whichweread“AisasubsetofB.” Inparticular,noticethatforanysetA,∅ AandA A. Also ⊆ ⊆ N Z Q R C. ⊆ ⊆ ⊆ ⊆ ! A=B (A B)∧(B A). ⊆ ⊆ ⇐⇒ 9 Definition TheunionoftwosetsAandB,istheset A B={x:(x A) ∨ (x B)}. ∪ ∈ ∈ Thisisread“AunionB.” Seefigure1.1. SetsandNotation 3 10 Definition TheintersectionoftwosetsAandB,is A B={x:(x A) ∧ (x B)}. ∩ ∈ ∈ Thisisread“AintersectionB.” Seefigure1.2. 11 Definition ThedifferenceoftwosetsAandB,is A\B={x:(x A) ∧(x B)}. ∈ 6∈ Thisisread“AsetminusB.” Seefigure1.3. A B A B A B Figure1.1:A B Figure1.2:A B Figure1.3:A\B ∪ ∩ 12 Example Provebymeansofsetinclusionthat (A B) C=(A C) (B C). ∪ ∩ ∩ ∪ ∩ Solution: Wehave, x (A B) C x (A B)∧x C ∈ ∪ ∩ ∈ ∪ ∈ (x A∨x B)∧x C ⇐⇒ ∈ ∈ ∈ (x A∧x C)∨(x B∧x C) ⇐⇒ ∈ ∈ ∈ ∈ (x A C)∨(x B C) ⇐⇒ ∈ ∩ ∈ ∩ x (A C) (B C), ⇐⇒ ∈ ∩ ∪ ∩ whichestablishestheequ⇐a⇒lity. 4 Chapter1 13 Definition LetA ,A ,...,A ,besets. TheCartesianProductofthese 1 2 n nsetsisdefinedanddenotedby A A A ={(a ,a ,...,a ):a A }, 1 2 n 1 2 n k k × ×···× ∈ that is, the set of all ordered n-tuples whose elements belong to the givensets. ! IntheparticularcasewhenalltheAk areequaltoasetA,wewrite A1 A2 An =An. × ×···× Ifa Aandb Awewrite(a,b) A2. ∈ ∈ ∈ 14 Definition Let x R. The absolute value of x—denoted by |x|—is ∈ definedby −x if x<0, |x|= x if x 0. ≥ Itfollowsfromthedefinitionthatforx R, ∈ −|x| x |x|. (1.3) ≤ ≤ t 0 = |x| t −t x t. (1.4) ≥ ≤ ≤ ≤ a⇒ R = ⇐√⇒a2 =|a|. (1.5) ∀ ∈ ⇒ 15Theorem(TriangleInequality) Let(a,b) R2. Then ∈ |a+b| |a|+|b|. (1.6) ≤ Proof From1.3,byaddition, −|a| a |a| ≤ ≤ to −|b| b |b| ≤ ≤ weobtain −(|a|+|b|) a+b (|a|+|b|), ≤ ≤ whencethetheoremfollowsby1.4. q
Description: