ebook img

linear algebra book PDF

319 Pages·2004·1.44 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview linear algebra book

Linear Algebra Maths 270 c (cid:13) DavidA.SANTOS Community College of Philadelphia: SPRING 2004 March 3, 2004 Revision Contents Preface v 1 Preliminaries 1 1.1 SetsandNotation. . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 PartitionsandEquivalenceRelations . . . . . . . . . . . . . . 5 1.3 BinaryOperations . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 n 1.5 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 MatricesandMatrixOperations 25 2.1 TheAlgebraofMatrices . . . . . . . . . . . . . . . . . . . . . . 25 2.2 MatrixMultiplication . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3 TraceandTranspose . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4 SpecialMatrices . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.5 MatrixInversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.6 BlockMatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.7 RankofaMatrix. . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.8 RankandInvertibility . . . . . . . . . . . . . . . . . . . . . . . . 69 3 LinearEquations 79 3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.2 ExistenceofSolutions. . . . . . . . . . . . . . . . . . . . . . . . 84 3.3 ExamplesofLinearSystems . . . . . . . . . . . . . . . . . . . . 86 4 R2,R3 andRn 93 4.1 PointsandBi-pointsinR2 . . . . . . . . . . . . . . . . . . . . . 93 4.2 VectorsinR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.3 DotProductinR2 . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.4 LinesonthePlane . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.5 VectorsinR3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 iii iv CONTENTS 4.6 PlanesandLinesinR3 . . . . . . . . . . . . . . . . . . . . . . . 126 4.7 Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5 VectorSpaces 137 5.1 VectorSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.2 VectorSubspaces . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.3 LinearIndependence . . . . . . . . . . . . . . . . . . . . . . . 145 5.4 SpanningSets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.5 Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.6 Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 6 LinearTransformations 167 6.1 LinearTransformations . . . . . . . . . . . . . . . . . . . . . . . 167 6.2 KernelandImageofaLinearTransformation . . . . . . . . . 170 6.3 MatrixRepresentation . . . . . . . . . . . . . . . . . . . . . . . 174 7 Determinants 183 7.1 Permutations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 7.2 CycleNotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 7.3 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 7.4 LaplaceExpansion . . . . . . . . . . . . . . . . . . . . . . . . . 205 7.5 DeterminantsandLinearSystems . . . . . . . . . . . . . . . . 213 8 EigenvaluesandEigenvectors 215 8.1 SimilarMatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 8.2 EigenvaluesandEigenvectors . . . . . . . . . . . . . . . . . . 216 8.3 Diagonalisability . . . . . . . . . . . . . . . . . . . . . . . . . . 221 A SomeAnswersandHints 227 Preface These notes started during the Spring of 2002, when John MAJEWICZ andIeachtaughtasectionofLinearAlgebra. Iwouldliketothankhim fornumeroussuggestionsonthewrittennotes. The students of my class were: Craig BARIBAULT, Chun CAO, Jacky CHAN, Pho DO, Keith HARMON, Nicholas SELVAGGI, Sanda SHWE, and HuongVU. John’s students were David HERNÁNDEZ, Adel JAILILI, Andrew KIM, JongKIM,AbdelmounaimLAAYOUNI,AjuMATHEW,NikitaMORIN,Thomas NEGRÓN,LatoyaROBINSON,andSaemSOEURN. LinearAlgebraisoftenastudent’sfirstintroductiontoabstractmath- ematics. LinearAlgebraiswellsuitedforthis,asithasanumberofbeau- tifulbutelementaryandeasytoprovetheorems. Mypurposewiththese notes is to introduce students to the concept of proof in a gentle man- ner. DavidA.SANTOS ThisdocumentwaslastrevisedonMarch3,2004. v Thingsdone: ˚ RewrotethechapteronR2,R3,Rn ¸ Rewrotethesectiononcoordinates. (cid:204) Addedmoreexercises. Now,cananyone,fromanywhereintheworld,helpmewiththis? Thingstodo: ˚ Writeasectiononbarycentresindimension2. ¸ ProveCeva’sandMenelaus’Theoremsusingbarycentres. (cid:204) Writeasectiononisometries. ˝ Writeasectiononpositive-definitematrices. ˛ Writeasectiononquadrics. ˇ Drawmorediagrams. — Writeasectiononsumsofsubspaces. 1 Chapter Preliminaries 1.1 Sets and Notation 1 Definition Wewillmeanbyasetacollectionofwelldefinedmembers orelements. 2 Definition Thefollowingsetshavespecialsymbols. N={0,1,2,3,...} denotesthesetofnaturalnumbers. Z={...,−3,−2,−1,0,1,2,3,...} denotesthesetofintegers. Q denotesthesetofrationalnumbers. R denotesthesetofrealnumbers. C denotesthesetofcomplexnumbers. ∅ denotestheemptyset. 3 Definition(Implications) The symbol = is read “implies”, and the symbol isread“ifandonlyif.” ⇒ 4 Exam⇐pl⇒e Prove that between any two rational numbers there is al- waysarationalnumber. Solution: Let(a,c) Z2,(b,d) (N\{0})2, a < c. Thenda<bc. Now ∈ ∈ b d a a+c ab+ad<ab+bc = a(b+d)<b(a+c) = < , b b+d ⇒ 1 ⇒ 2 Chapter1 a+c c da+dc<cb+cd = d(a+c)<c(b+d) = < , b+d d a+c whencetherationalnumb⇒er liesbetween a⇒and c. b+d b d ! Wecanalsoarguethattheaverageoftwodistinctnumbersliesbetweenthe numbersandsoifr1 <r2arerationalnumbers,then r1+2r2 liesbetweenthem. 5 Definition LetAbeaset. IfabelongstothesetA,thenwewritea A, ∈ read “a is an element of A.” If a does not belong to the set A, we write a A,read“aisnotanelementofA.” 6∈ 6 Definition(Conjunction,Disjunction,andNegation) Thesymbol∨isread “or” (disjunction), the symbol ∧ is read “and” (conjunction), and the symbol¬isread“not.” 7 Definition(Quantifiers) Thesymbol isread“forall”(theuniversalquan- ∀ tifier),andthesymbol isread“thereexists”(theexistentialquantifier). ∃ Wehave ¬( x A,P(x)) ( A,¬P(x)) (1.1) ∀ ∈ ∃∈ ⇐⇒ ¬( A,P(x)) ( x A,¬P(x)) (1.2) ∃∈ ∀ ∈ 8 Definition(Subset) If a A w⇐e⇒have a B, then we write A B, ∀ ∈ ∈ ⊆ whichweread“AisasubsetofB.” Inparticular,noticethatforanysetA,∅ AandA A. Also ⊆ ⊆ N Z Q R C. ⊆ ⊆ ⊆ ⊆ ! A=B (A B)∧(B A). ⊆ ⊆ ⇐⇒ 9 Definition TheunionoftwosetsAandB,istheset A B={x:(x A) ∨ (x B)}. ∪ ∈ ∈ Thisisread“AunionB.” Seefigure1.1. SetsandNotation 3 10 Definition TheintersectionoftwosetsAandB,is A B={x:(x A) ∧ (x B)}. ∩ ∈ ∈ Thisisread“AintersectionB.” Seefigure1.2. 11 Definition ThedifferenceoftwosetsAandB,is A\B={x:(x A) ∧(x B)}. ∈ 6∈ Thisisread“AsetminusB.” Seefigure1.3. A B A B A B Figure1.1:A B Figure1.2:A B Figure1.3:A\B ∪ ∩ 12 Example Provebymeansofsetinclusionthat (A B) C=(A C) (B C). ∪ ∩ ∩ ∪ ∩ Solution: Wehave, x (A B) C x (A B)∧x C ∈ ∪ ∩ ∈ ∪ ∈ (x A∨x B)∧x C ⇐⇒ ∈ ∈ ∈ (x A∧x C)∨(x B∧x C) ⇐⇒ ∈ ∈ ∈ ∈ (x A C)∨(x B C) ⇐⇒ ∈ ∩ ∈ ∩ x (A C) (B C), ⇐⇒ ∈ ∩ ∪ ∩ whichestablishestheequ⇐a⇒lity. 4 Chapter1 13 Definition LetA ,A ,...,A ,besets. TheCartesianProductofthese 1 2 n nsetsisdefinedanddenotedby A A A ={(a ,a ,...,a ):a A }, 1 2 n 1 2 n k k × ×···× ∈ that is, the set of all ordered n-tuples whose elements belong to the givensets. ! IntheparticularcasewhenalltheAk areequaltoasetA,wewrite A1 A2 An =An. × ×···× Ifa Aandb Awewrite(a,b) A2. ∈ ∈ ∈ 14 Definition Let x R. The absolute value of x—denoted by |x|—is ∈ definedby −x if x<0, |x|=   x if x 0. ≥  Itfollowsfromthedefinitionthatforx R, ∈ −|x| x |x|. (1.3) ≤ ≤ t 0 = |x| t −t x t. (1.4) ≥ ≤ ≤ ≤ a⇒ R = ⇐√⇒a2 =|a|. (1.5) ∀ ∈ ⇒ 15Theorem(TriangleInequality) Let(a,b) R2. Then ∈ |a+b| |a|+|b|. (1.6) ≤ Proof From1.3,byaddition, −|a| a |a| ≤ ≤ to −|b| b |b| ≤ ≤ weobtain −(|a|+|b|) a+b (|a|+|b|), ≤ ≤ whencethetheoremfollowsby1.4. q

Description:
Mar 3, 2004 7 Definition (Quantifiers) The symbol ∀ is read “for all” (the universal that is, the set of all ordered n-tuples whose elements belong to the.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.