ebook img

Linear Algebra and Linear Models PDF

176 Pages·2012·1.32 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Linear Algebra and Linear Models

Universitext Universitext SeriesEditors: SheldonAxler SanFranciscoStateUniversity,SanFrancisco,CA,USA VincenzoCapasso UniversitàdegliStudidiMilano,Milan,Italy CarlesCasacuberta UniversitatdeBarcelona,Barcelona,Spain AngusMacIntyre QueenMary,UniversityofLondon,London,UK KennethRibet UniversityofCalifornia,Berkeley,Berkeley,CA,USA ClaudeSabbah CNRS,ÉcolePolytechnique,Palaiseau,France EndreSüli UniversityofOxford,Oxford,UK WojborA.Woyczynski CaseWesternReserveUniversity,Cleveland,OH,USA Universitext is a series of textbooks that presents material from a wide variety of mathematical disciplines at master’s level and beyond. The books, often well class-tested by their author, may have an informal, personal, even experimental approach to their subject matter. Some of the most successful and established books in the series have evolved through several editions, always following the evolutionofteachingcurricula,intoverypolishedtexts. Thus as research topics trickle down into graduate-level teaching, first textbooks writtenfornew,cutting-edgecoursesmaymaketheirwayintoUniversitext. Forfurthervolumes: www.springer.com/series/223 R.B. Bapat Linear Algebra and Linear Models Third Edition Prof.R.B.Bapat IndianStatisticalInstitute NewDelhi India Aco-publicationwiththeHindustanBookAgency,NewDelhi,licensedforsaleinallcountriesoutside ofIndia.SoldanddistributedwithinIndiabytheHindustanBookAgency,P19GreenParkExtn.,New Delhi110016,India ©HindustanBookAgency2011 HBAISBN978-93-80250-28-1 ISSN0172-5939 e-ISSN2191-6675 Universitext ISBN978-1-4471-2738-3 e-ISBN978-1-4471-2739-0 DOI10.1007/978-1-4471-2739-0 SpringerLondonDordrechtHeidelbergNewYork BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressControlNumber:2012931413 MathematicsSubjectClassification: 15A03,15A09,15A18,62J05,62J10,62K10 Firstedition:1993byHindustanBookAgency,Delhi,India Secondedition:2000bySpringer-VerlagNewYork,Inc.,andHindustanBookAgency ©Springer-VerlagLondonLimited2012 Apartfromanyfairdealingforthepurposesofresearchorprivatestudy,orcriticismorreview,asper- mittedundertheCopyright,DesignsandPatentsAct1988,thispublicationmayonlybereproduced, storedortransmitted,inanyformorbyanymeans,withthepriorpermissioninwritingofthepublish- ers,orinthecaseofreprographicreproductioninaccordancewiththetermsoflicensesissuedbythe CopyrightLicensingAgency.Enquiriesconcerningreproductionoutsidethosetermsshouldbesentto thepublishers. Theuseofregisterednames,trademarks,etc.,inthispublicationdoesnotimply,evenintheabsenceofa specificstatement,thatsuchnamesareexemptfromtherelevantlawsandregulationsandthereforefree forgeneraluse. Thepublishermakesnorepresentation,expressorimplied,withregardtotheaccuracyoftheinformation containedinthisbookandcannotacceptanylegalresponsibilityorliabilityforanyerrorsoromissions thatmaybemade. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Themainpurposeofthepresentmonographistoprovidearigorousintroductionto thebasicaspectsofthetheoryoflinearestimationandhypothesistesting.Thenec- essary prerequisites in matrices, multivariate normal distribution, and distribution ofquadraticformsaredevelopedalongtheway.Themonographisprimarilyaimed atadvancedundergraduateandfirst-yearmaster’sstudentstakingcoursesinlinear algebra, linear models, multivariate analysis, and design of experiments. It should alsobeofusetoresearchersasasourceofseveralstandardresultsandproblems. Some features in which we deviate from the standard textbooks on the subject areasfollows. Wedealexclusivelywithrealmatrices,andthisleadstosomenonconventional proofs.Oneexampleistheproofofthefactthatasymmetricmatrixhasrealeigen- values. We rely on ranks and determinants a bit more than is done usually. The developmentinthefirsttwochaptersissomewhatdifferentfromthatinmosttexts. It is not the intention to give an extensive introduction to matrix theory. Thus, severalstandardtopicssuchasvariouscanonicalformsandsimilarityarenotfound here.Weoftenderiveonlythoseresultsthatareexplicitlyusedlater.Thelistoffacts inmatrixtheorythatareelementary,elegant,butnotcoveredhereisalmostendless. Weputagreatdealofemphasisonthegeneralizedinverseanditsapplications. Thisamountstoavoidingthe“geometric”orthe“projections”approachthatisfa- voredbysomeauthorsandtakingrecoursetoamorealgebraicapproach.Partlyasa personalbias,Ifeelthatthegeometricapproachworkswellinprovidinganunder- standingofwhyaresultshouldbetruebuthaslimitationswhenitcomestoproving theresultrigorously. Thefirstthreechaptersaredevotedtomatrixtheory,linearestimation,andtests of linear hypotheses, respectively. Chapter 4 collects several results on eigenval- uesandsingularvaluesthatarefrequentlyrequiredinstatisticsbutusuallyarenot proved in statistics texts. This chapter also includes sections on principal compo- nentsandcanonicalcorrelations.Chapter5preparesthebackgroundforacoursein designs, establishing the linear model as the underlying mathematical framework. The sections on optimality may be useful as motivation for further reading in this research area in which there is considerable activity at present. Similarly, the last v vi Preface chaptertriestoprovideaglimpseintotherichnessofatopicingeneralizedinverses (rankadditivity)thathasmanyinterestingapplicationsaswell. Several exercises are included, some of which are used in subsequent develop- ments. Hints are provided for a few exercises, whereas reference to the original sourceisgiveninsomeothercases. IamgratefultoProfessor AlokeDey,H.Neudecker,K.P.S.BhaskaraRao,and Dr. N. Eagambaram for their comments on various portions of the manuscript. ThanksarealsoduetoB.Ganeshanforhishelpingettingthecomputerprintoutsat variousstages. Aboutthe SecondEdition This is a thoroughly revised and enlarged version of the first edition. Besides cor- recting the minor mathematical and typographical errors, the following additions havebeenmade: 1. A few problems have been added at the end of each section in the first four chapters.Allthechaptersnowcontainsomenewexercises. 2. Completesolutionsorhintsareprovidedtoseveralproblemsandexercises. 3. Two new sections, one on the “volume of a matrix” and the other on the “star order,”havebeenadded. Aboutthe ThirdEdition Inthiseditionthematerialhasbeencompletelyreorganized.Thelinearalgebrapart isdealtwithinthefirstsixchapters.Thesechaptersconstituteafirstcourseinlinear algebra,suitableforstatisticsstudents,orforthoselookingforamatrixapproachto linearalgebra. We have added a chapter on linear mixed models. There is also a new chapter containing additional problems on rank. These problems are not covered in a tra- ditional linear algebra course. However we believe that the elegance of the matrix theoreticapproachtolinearalgebraisclearlybroughtoutbyproblemsonrankand generalizedinverseliketheonescoveredinthischapter. I thank the numerous individuals who made suggestions for improvement and pointed out corrections in the first two editions. I wish to particularly mention N.EagambaramandJeffStuartfortheirmeticulouscomments.IalsothankAloke DeyforhiscommentsonapreliminaryversionofChap.9. NewDelhi,India RavindraBapat Contents 1 VectorSpacesandSubspaces . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 VectorSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 BasisandDimension . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Rank,InnerProductandNonsingularity . . . . . . . . . . . . . . . . 9 2.1 Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 InnerProduct. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Nonsingularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 FrobeniusInequality . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 EigenvaluesandPositiveDefiniteMatrices . . . . . . . . . . . . . . . 21 3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 TheSpectralTheorem . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 SchurComplement . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4 GeneralizedInverses . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 MinimumNormandLeastSquaresg-Inverse . . . . . . . . . . . . 33 4.3 Moore–PenroseInverse . . . . . . . . . . . . . . . . . . . . . . . 34 4.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5 InequalitiesforEigenvaluesandSingularValues . . . . . . . . . . . 37 5.1 EigenvaluesofaSymmetricMatrix . . . . . . . . . . . . . . . . . 37 5.2 SingularValues . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.3 MinimaxPrincipleandInterlacing . . . . . . . . . . . . . . . . . 41 5.4 Majorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.5 VolumeofaMatrix . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 vii viii Contents 6 RankAdditivityandMatrixPartialOrders . . . . . . . . . . . . . . 51 6.1 CharacterizationsofRankAdditivity . . . . . . . . . . . . . . . . 51 6.2 TheStarOrder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 7 LinearEstimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 7.1 LinearModel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 7.2 Estimability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 7.3 ResidualSumofSquares . . . . . . . . . . . . . . . . . . . . . . 66 7.4 GeneralLinearModel . . . . . . . . . . . . . . . . . . . . . . . . 72 7.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 8 TestsofLinearHypotheses. . . . . . . . . . . . . . . . . . . . . . . . 79 8.1 MultivariateNormalDistribution . . . . . . . . . . . . . . . . . . 79 8.2 QuadraticFormsandCochran’sTheorem . . . . . . . . . . . . . . 83 8.3 One-WayandTwo-WayClassifications . . . . . . . . . . . . . . . 86 8.4 LinearHypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . 90 8.5 MultipleCorrelation . . . . . . . . . . . . . . . . . . . . . . . . . 92 8.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 9 LinearMixedModels. . . . . . . . . . . . . . . . . . . . . . . . . . . 99 9.1 FixedEffectsandRandomEffects. . . . . . . . . . . . . . . . . . 99 9.2 MLandREMLEstimators . . . . . . . . . . . . . . . . . . . . . 102 9.3 ANOVAEstimators . . . . . . . . . . . . . . . . . . . . . . . . . 107 9.4 PredictionofRandomEffects . . . . . . . . . . . . . . . . . . . . 112 9.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 10 MiscellaneousTopics . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 10.1 PrincipalComponents . . . . . . . . . . . . . . . . . . . . . . . . 115 10.2 CanonicalCorrelations. . . . . . . . . . . . . . . . . . . . . . . . 116 10.3 ReducedNormalEquations . . . . . . . . . . . . . . . . . . . . . 117 10.4 TheC-Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 10.5 E-,A-andD-Optimality . . . . . . . . . . . . . . . . . . . . . . . 120 10.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 11 AdditionalExercisesonRank . . . . . . . . . . . . . . . . . . . . . . 129 12 HintsandSolutionstoSelectedExercises. . . . . . . . . . . . . . . . 135 13 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Chapter 1 Vector Spaces and Subspaces 1.1 Preliminaries Inthischapterwefirstreviewcertainbasicconcepts.Weconsideronlyrealmatri- ces.Althoughourtreatmentisself-contained,thereaderisassumedtobefamiliar with the basic operations on matrices. We also assume knowledge of elementary propertiesofthedeterminant. Anm×nmatrixconsistsofmnrealnumbersarrangedinmrowsandncolumns. Theentryinrowiandcolumnj ofthematrixAisdenotedbya .Anm×1matrix ij is called a column vector of order m; similarly, a 1×n matrix is a row vector of ordern.Anm×nmatrixiscalledasquarematrixifm=n. IfAandB arem×nmatrices,thenA+B isdefinedasthem×nmatrixwith (i,j)-entrya +b .IfAisamatrixandcisarealnumberthencAisobtainedby ij ij multiplyingeachelementofAbyc. IfAism×pandB isp×n,thentheirproductC=AB isanm×nmatrixwith (i,j)-entrygivenby (cid:2)p c = a b . ij ik kj k=1 Thefollowingpropertieshold: (AB)C=A(BC), A(B+C)=AB+AC, (A+B)C=AC+BC. Thetransposeofthem×nmatrixA,denotedbyA(cid:2),isthen×mmatrixwhose (i,j)-entryisa .Itcanbeverifiedthat(A(cid:2))(cid:2)=A,(A+B)(cid:2)=A(cid:2)+B(cid:2)and(AB)(cid:2)= ji (cid:2) (cid:2) B A. A good understanding of the definition of matrix multiplication is quite useful. We note some simple facts which are often required. We assume that all products occurring here are defined in the sense that the orders of the matrices make them compatibleformultiplication. R.B.Bapat,LinearAlgebraandLinearModels,Universitext, 1 DOI10.1007/978-1-4471-2739-0_1,©Springer-VerlagLondonLimited2012

Description:
Linear Algebra and Linear Models comprises a concise and rigorous introduction to linear algebra required for statistics followed by the basic aspects of the theory of linear estimation and hypothesis testing. The emphasis is on the approach using generalized inverses. Topics such as the multivariat
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.