ebook img

Linear Algebra and Geometry PDF

536 Pages·2012·3.869 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Linear Algebra and Geometry

Linear Algebra and Geometry Igor R. Shafarevich (cid:2) Alexey O. Remizov Linear Algebra and Geometry Translated by David Kramer and Lena Nekludova IgorR.Shafarevich AlexeyO.Remizov SteklovMathematicalInstitute CMAP RussianAcademyofSciences ÉcolePolytechniqueCNRS Moscow,Russia PalaiseauCedex,France Translators: DavidKramer Lancaster,PA,USA LenaNekludova Brookline,MA,USA TheoriginalRussianeditionwaspublishedas“Linejnayaalgebraigeometriya”byFizmatlit, Moscow,2009 ISBN978-3-642-30993-9 ISBN978-3-642-30994-6(eBook) DOI10.1007/978-3-642-30994-6 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2012946469 MathematicsSubjectClassification(2010): 15-01,51-01 ©Springer-VerlagBerlinHeidelberg2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Thisbookistheresultofaseriesoflecturesonlinearalgebraandthegeometryof multidimensionalspacesgiveninthe1950sthrough1970sbyIgorR.Shafarevich attheFacultyofMechanicsandMathematicsofMoscowStateUniversity. Notesforsomeoftheselectureswerepreservedinthefacultylibrary,andthese were used in preparing this book. We have also included some topics that were discussedinstudentseminarsatthetime.Allthematerialincludedinthisbookis theresultofjointworkofbothauthors. We employ in this book some results on the algebra of polynomials that are usually taught in a standard course in algebra (most of which are to be found in Chaps. 2 through 5 of this book). We have used only a few such results, without proof: the possibility of dividing one polynomial by another with remainder; the theoremthatapolynomialwithcomplexcoefficientshasacomplexroot;thatevery polynomialwithrealcoefficientscanbefactoredintoaproductofirreduciblefirst- andsecond-degreefactors;andthetheoremthatthenumberofrootsofapolynomial thatisnotidenticallyzeroisatmostthedegreeofthepolynomial. To provide a visual basis for this course, it was preceded by an introductory courseinanalyticgeometry,towhichweshalloccasionallyrefer.Inaddition,some topicsandexamplesareincludedinthisbookthatarenotreallypartofacoursein linearalgebraandgeometrybutareprovidedforillustrationofvarioustopics.Such itemsaremarkedwithanasteriskandmaybeomittedifdesired. For the convenience of the reader, we present here the system of notation used in this book. For vector spaces we use sans serif letters: L,M,N,...; for vectors, weuseboldfaceitalics:x,y,z,...;forlineartransformations,weusecalligraphic letters: A,B,C,...; and for the corresponding matrices, we use uppercase italic letters:A,B,C,.... Acknowledgements TheauthorsaregratefultoM.I.Zelinkin,D.O.Orlov,andYa.V.Tatarinovforread- ingpartsofanearlierversionofthisbookandmakinganumberofusefulsugges- v vi Preface tionsandremarks.Theauthorsarealsodeeplygratefultooureditor,S.Kuleshov, who gave the manuscript a very careful reading. His advice resulted in a number of important changes and additions. In particular, some parts of this book would not have appeared in their present form had it not been for his participation in thisproject.Wewouldalsoliketoofferourheartythankstothetranslators,David KramerandLenaNekludova,fortheirEnglishtranslationandinparticularforcor- rectinga numberof inaccuraciesandtypographicalerrors that werepresent in the Russianeditionofthisbook. Contents 1 LinearEquations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 LinearEquationsandFunctions . . . . . . . . . . . . . . . . . . . 1 1.2 GaussianElimination . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Examples* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 MatricesandDeterminants . . . . . . . . . . . . . . . . . . . . . . . 25 2.1 DeterminantsofOrders2and3 . . . . . . . . . . . . . . . . . . . 25 2.2 DeterminantsofArbitraryOrder . . . . . . . . . . . . . . . . . . 30 2.3 PropertiesthatCharacterizeDeterminants. . . . . . . . . . . . . . 37 2.4 ExpansionofaDeterminantAlongItsColumns . . . . . . . . . . 39 2.5 Cramer’sRule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.6 Permutations,SymmetricandAntisymmetricFunctions . . . . . . 44 2.7 ExplicitFormulafortheDeterminant . . . . . . . . . . . . . . . . 50 2.8 TheRankofaMatrix . . . . . . . . . . . . . . . . . . . . . . . . 53 2.9 OperationsonMatrices . . . . . . . . . . . . . . . . . . . . . . . 60 2.10 InverseMatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3 VectorSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.1 TheDefinitionofaVectorSpace . . . . . . . . . . . . . . . . . . 79 3.2 DimensionandBasis . . . . . . . . . . . . . . . . . . . . . . . . 86 3.3 LinearTransformationsofVectorSpaces . . . . . . . . . . . . . . 101 3.4 ChangeofCoordinates. . . . . . . . . . . . . . . . . . . . . . . . 107 3.5 IsomorphismsofVectorSpaces . . . . . . . . . . . . . . . . . . . 112 3.6 TheRankofaLinearTransformation . . . . . . . . . . . . . . . . 118 3.7 DualSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 3.8 FormsandPolynomialsinVectors . . . . . . . . . . . . . . . . . 127 4 LinearTransformationsofaVectorSpacetoItself . . . . . . . . . . 133 4.1 EigenvectorsandInvariantSubspaces . . . . . . . . . . . . . . . . 133 4.2 ComplexandRealVectorSpaces . . . . . . . . . . . . . . . . . . 142 4.3 Complexification . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 4.4 OrientationofaRealVectorSpace . . . . . . . . . . . . . . . . . 154 vii viii Contents 5 JordanNormalForm . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 5.1 PrincipalVectorsandCyclicSubspaces . . . . . . . . . . . . . . . 161 5.2 JordanNormalForm(Decomposition) . . . . . . . . . . . . . . . 165 5.3 JordanNormalForm(Uniqueness) . . . . . . . . . . . . . . . . . 169 5.4 RealVectorSpaces. . . . . . . . . . . . . . . . . . . . . . . . . . 173 5.5 Applications* . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 6 QuadraticandBilinearForms . . . . . . . . . . . . . . . . . . . . . . 191 6.1 BasicDefinitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 6.2 ReductiontoCanonicalForm . . . . . . . . . . . . . . . . . . . . 198 6.3 Complex,Real,andHermitianForms . . . . . . . . . . . . . . . . 204 7 EuclideanSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 7.1 TheDefinitionofaEuclideanSpace . . . . . . . . . . . . . . . . 213 7.2 OrthogonalTransformations . . . . . . . . . . . . . . . . . . . . . 223 7.3 OrientationofaEuclideanSpace*. . . . . . . . . . . . . . . . . . 230 7.4 Examples* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 7.5 SymmetricTransformations . . . . . . . . . . . . . . . . . . . . . 245 7.6 ApplicationstoMechanicsandGeometry* . . . . . . . . . . . . . 255 7.7 Pseudo-EuclideanSpaces . . . . . . . . . . . . . . . . . . . . . . 265 7.8 LorentzTransformations . . . . . . . . . . . . . . . . . . . . . . . 275 8 AffineSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 8.1 TheDefinitionofanAffineSpace . . . . . . . . . . . . . . . . . . 289 8.2 AffineSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 8.3 AffineTransformations . . . . . . . . . . . . . . . . . . . . . . . 301 8.4 AffineEuclideanSpacesandMotions . . . . . . . . . . . . . . . . 309 9 ProjectiveSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 9.1 DefinitionofaProjectiveSpace . . . . . . . . . . . . . . . . . . . 319 9.2 ProjectiveTransformations . . . . . . . . . . . . . . . . . . . . . 328 9.3 TheCrossRatio . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 9.4 TopologicalPropertiesofProjectiveSpaces* . . . . . . . . . . . . 339 10 TheExteriorProductandExteriorAlgebras . . . . . . . . . . . . . 349 10.1 PlückerCoordinatesofaSubspace . . . . . . . . . . . . . . . . . 349 10.2 ThePlückerRelationsandtheGrassmannian . . . . . . . . . . . . 353 10.3 TheExteriorProduct . . . . . . . . . . . . . . . . . . . . . . . . . 358 10.4 ExteriorAlgebras* . . . . . . . . . . . . . . . . . . . . . . . . . . 367 10.5 Appendix* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 11 Quadrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385 11.1 QuadricsinProjectiveSpace . . . . . . . . . . . . . . . . . . . . 385 11.2 QuadricsinComplexProjectiveSpace . . . . . . . . . . . . . . . 394 11.3 IsotropicSubspaces . . . . . . . . . . . . . . . . . . . . . . . . . 398 11.4 QuadricsinaRealProjectiveSpace . . . . . . . . . . . . . . . . . 410 11.5 QuadricsinaRealAffineSpace . . . . . . . . . . . . . . . . . . . 414 11.6 QuadricsinanAffineEuclideanSpace . . . . . . . . . . . . . . . 425 11.7 QuadricsintheRealPlane* . . . . . . . . . . . . . . . . . . . . . 428 Contents ix 12 HyperbolicGeometry . . . . . . . . . . . . . . . . . . . . . . . . . . 433 12.1 HyperbolicSpace* . . . . . . . . . . . . . . . . . . . . . . . . . . 434 12.2 TheAxiomsofPlaneGeometry* . . . . . . . . . . . . . . . . . . 443 12.3 SomeFormulasofHyperbolicGeometry* . . . . . . . . . . . . . 454 13 Groups,Rings,andModules . . . . . . . . . . . . . . . . . . . . . . . 467 13.1 GroupsandHomomorphisms . . . . . . . . . . . . . . . . . . . . 467 13.2 DecompositionofFiniteAbelianGroups . . . . . . . . . . . . . . 475 13.3 TheUniquenessoftheDecomposition . . . . . . . . . . . . . . . 481 13.4 FinitelyGeneratedTorsionModulesoveraEuclideanRing* . . . . 484 14 ElementsofRepresentationTheory . . . . . . . . . . . . . . . . . . . 497 14.1 BasicConceptsofRepresentationTheory . . . . . . . . . . . . . . 497 14.2 RepresentationsofFiniteGroups . . . . . . . . . . . . . . . . . . 503 14.3 IrreducibleRepresentations . . . . . . . . . . . . . . . . . . . . . 508 14.4 RepresentationsofAbelianGroups . . . . . . . . . . . . . . . . . 511 HistoricalNote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521 Preliminaries Inthisbookweshalluseanumberofconceptsfromsettheory.Theseideasappear inmostmathematicscourses,andsotheywillbefamiliartosomereaders.However, weshallrecallthemhereforconvenience. SetsandMappings Asetisacollectionofarbitrarilychosenobjectsdefinedbycertainpreciselyspeci- fiedproperties(forexample,thesetofallrealnumbers,thesetofallpositivenum- bers, the set of solutions of a given equation, the set of points that form a given geometric figure, the set of wolves or trees in a given forest). If a set consists of a finite number of elements, then it is said to be finite, and if not, it is said to be infinite.Weshallemploystandardnotationforcertainimportantsets,denotingthe setofnaturalnumbersbyN,thesetofintegersbyZ,thesetofrationalnumbersby Q,thesetofrealnumbersbyR,andthesetofcomplexnumbersbyC.Thesetof naturalnumbersnotexceedingagivennaturalnumbern,thatis,thesetconsisting of 1,2,...,n,willbedenotedby N .Theobjectsthatmakeupasetarecalledits n elementsorsometimespoints.If x isanelementoftheset M,thenweshallwrite x ∈M. If we need to specify that x in not an element of M, then we shall write x∈/M. AsetS consistingofcertainelementsofthesetM (thatis,everyelementofthe set S is also an element of the set M) is called a subset of M. We write S ⊂M. Forexample,N ⊂Nforarbitraryn,andlikewise,wehaveN⊂Z,Z⊂Q,Q⊂R, n andR⊂C.AsubsetofM consistingofelementsx ∈M (wheretheindexα runs α overagivenfiniteorinfiniteset)willbedenotedby{x }.Itisconvenienttoinclude α among the subsets of a set M the set that contains no elements at all. We call this settheemptysetanddenoteitby∅. LetM andN betwoarbitrarysets.Thecollectionofallelementsthatbelongsi- multaneouslytobothM andN iscalledtheintersectionofM andN andisdenoted byM∩N.IfwehaveM∩N =∅,thenwesaythatthesetsM andN aredisjoint. xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.