ebook img

Linear Algebra and Geometry PDF

293 Pages·1965·11.773 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Linear Algebra and Geometry

LINEARALGEBRAANDGEOMETRY TranslatedfromtheDutchedition byA.VANDERSuns LINEAR ALGEBRA AND GEOMETRY NICOLAASH. KUIPER Pro/assayofMathematics Um'unsiWofAmsterdam SECONDREVISEDEDITION "NM. NORTH-HOLLANDPUBLISHINGCOMPANY—AMSTERDAM Nopartofthisbookmaybereproducedinanyform byprint,photoprint,microfilmoranyothermeans withoutwrittenpermissionfromthepublisher 15!Edition1962 andprinting1963 andrevisededition1965 PUBLISHERS: NORTH-HOLLANDPUBLISHINGC0,, AMSTERDAM sou;DISTRIBUTOR?FORU.S.A.: INTERSCIENCEPUBLISHERS INC., NEWYORK PRINTEDINTHENETHERLANDS PREFACE Thesubjectwhichwasusuallydesignatedbythenamesanalytic geometry,affinegeometryandprojectivegeometry,hasgradually grownintoanewsubjectunderthegreatunifyingandstimulating influenceofalgebra.Herelinearalgebraplaysadominantroledue toitsuse asatechnique andalsobecausemanyoftheessential ideasofthesubjectbelongtolinearalgebra. Inthisbookwefollowthistrend.Wetrytopenetrateoursubject- matterwiththemodernalgebraictoolsthatareusefulinallmathe— matics.Howeverithasbeenouraimatthesametimetopreserve theaestheticallysatisfyinggeometricalflavourofthesubject.We haveincludedmanygeometricaltheorems,someelementary,some importantinafield—freeaxiomaticapproach (likethetheoremof Desargues). Anotherspecialfeatureinourtreatmentisthatwehaveempha- sizedtheideaoffunctionsonspaces,inallthosecaseswhereitis customarytodealwiththeequations,curvesandsurfaces,which representthelevel-setsofthesefunctions.Ourmethodisveryfertile, ascanbeseenfromthetreatmentofquadraticsurfacesandthe invarianceofcross-ratiounderprojection. Ingeneralwehavetriedtokeepourtreatmentcoordinate-free. In particularwehave not followed the custom ofreplacingany spacebyasetofcoordinates,andthenforgettingaboutthespaceas soon aspossible. Inthisspiritwehandlehomomorphism (linear mappings)beforeconsideringmatrices.Whileusingcoordinateswe havebeenconsciousofthefactthatcoordinatesalsoarefunctions. Asfaraslinearalgebraisconcernedthemainresulttowhichthis bookleadsisthe classificationofthe endomorphismofcomplex (C)andreal(R)finitedimensionalvectorspaces, (Jordan normal VI PREFACE form).Wealsogivetheclassificationofquadraticandhermitian functions(orforms)oneuclideanandunitaryvectorspaces. Asfarasgeometryisconcernedwedealwitheuclideanandaffine spaces, particularythose ofdimensiontwo andthree, withtheir motionsandaffinities,andlinearandquadraticfunctions. Alongchapter(Ch.20)isdevotedtoprojectivegeometry,while some attentionispaidto finite planes (Ch.8), non—euclideange- ometry(Ch.21)andthetopologyofsomeveryelementaryvarieties (Ch.22).InCh. 16thetheoryofleastsquaresandcorrelationcoef- ficientsismentionedastheapproachfromourpointofViewandin ourformulationseemsclarifyingandisnotgenerallyknown. WhilepreparingtheDutcheditionofthisbookandalsoduring the preparation of this translation we have had the benefits of criticalremarks, suggestions andhelp fromProfessorF. van der Blij,Mr.M.Keuls,ProfessorT.A.Springer,Mr.L. R. Verdooren, andothers.Weareverygratefulforthishelp. ThetranslatorDr.A.vanderSluishasnotrestrictedhisworkto afaithfultranslation,but,incooperationwiththeauthor,hehas improvedonthe Dutch editioninviewofhisown criticism and thoseofothers.TheauthorexpresseshisextremegratitudetoDr. A.vanderSluis.Thetranslator,inhisturn,wishesto express his warm appreciation to the author for theopen-mindedness and cooperationwithwhichhewelcomedanysuggestion. Dr.T.J.WillrnorefromLiverpoolUniversityreadthetextand made several improvements, particularly those of a linguistic nature.Wethankhimwarmlyforthisworkandhisinterest. Finallyweliketothankthepublisherforhiscontributiontothe bookandforthepleasantcooperation. Wageningen,September1961. N.H.KUIPER A.VANDERSuns CONTENTS CHAPTER VECTORSINTEEPLANEANDINSPACE . . . . . . . . . . 2. SUBSET.PRODUCTSET,RELATIONANDMAPPING ....... 91.59:. TSTHOHEMEEnP-AFDRUIMANMEDENATSMRIEOICNNTARALELPVRTEEHCSETEOONRRTEAMSTPSIAOCN.EO.VF.”A..LI.N..E.....1.... ... ... ... -.. ThedualvectorspaceV" ..... . .......... m. FIRSTDEGREEFUNCTIONSON,ANDLINEARVARIETIESINA. . u. LINEAR'FUNCTIONSANDLINESINA2ANDA".APPLICATIONS. Cross-ratio................... . . . . Harmonicseparation.................. can.. HAOFMINOIMTOERAPFHFISINMESOPLFAVNEECT.OR.S.PA.C.ES...... .................. ThevectorspaceHom(A,B) . . ........... . Composition(multiplication)ofhomomorphism...... Thedualhomomorphismofthedualvectorspaces..... . MATRICES ....................... SETS0FLINEAREQUATIONS . . . . ........... . FUNCTIONSOFSEVERALVARIABLES. DETERMINANT ..... . APPLICATIONSOFDETERMINANTS.VOLUME...... . . . QUADRATICANDSYMMETRICBILINEARFUNCTIONS. . . . A.Functionsonavectorspace. . . . . . . . . . . . . An.Hennitianfunctions................ B. Functionsonarealaffinespace. . . . . . . . . . . . .EUCLIDEANSPACE....-........’..... Unitaryvectorspaoe. . SOMEAPPLICATIONSIN STATISTICS . . . . . . . . . . . I. Methodofleastsquares linearadjustment,regression. . . II. Thecorrelationcoefficient . . . . . . . . . . . . . . . CLASSIFICATION OF ENDOMORPHISMS . . . . . . . . . . . Classificationofendomorphisms(complexnumbers) . . . . Endomorphismsofrealvectorspaces........ . . . Symmetricendomorphismsandquadraticfunctionsonaeu- dideanvectorspace.................. VIII CONTENTS Orthogonalendomorphism ............... 173 Hermitianendomorphismsandhermitianfunctionsonauni- taryspace......... . ........... 176 18. QvADRA'IICFUNCTIONSONANDQUADRA‘HCVARIETXESINEU- CLIDEANSPACES .................... 179 Investigationofagivenquadraticvariety......... 183 19. MOTIONSANDAFFINITIES . ............... 190 Motions........................ 199 Classificationofmotions................. 195 Motionintheeuclideanplaneasbasicnotion ....... 199 Affinitiesinrealspaces ................. 201 Someconstructionswithplaneaffinities.......... 204 20. PROJECTIVEGEOMETRY ................. 209 PointsatinfinityofanaffineplaneA2 .......... 209 Projectiveclassificationofquadrics(overCandR) ..... 221 Classificationofcollineations(overCandR)........ 224 21. NON-EUCLIDEANPLANES................. 237 Thehyperbolicplane.................. 237 Theellipticplane.................... 244 22. SOMETOPOLOGICALREMARKS............... 248 HINTSANDANSWERSTOTHEPROBLEMSINCHAPTER3—21 ..... 255 INDEX........................... 279 LISTOFSYMBOLS...................... 285 l. VECTORS IN THE PLANE AND IN SPACE Intheordinaryplane(orinordinaryspace)wetakeafixedpoint 0, thatwe callthe-origin. We consider arrowsinthe plane. An arrowcan becharacterizedbyitsinitialpoint and itsendpoint. Thewordarrowisthereforeusedassynonymfor”orderedpairof points”,thefirstpointofapairbeingtheinitialpoint,thesecond theendpointofthearrow.Anarrowwith0asinitialpointwillbe calledavector1). Aspecialvectoristhatwith0asinitialaswellasendpoint;itis specialsinceitcannotbedrawnasanordinaryarrow.Itiscalled thezerovectoranddesignatedby0. Thereisaone»to-onerelationshipbetweenpointsoftheplaneand vectors; indeed, toeachpoint there corresponds onevectorwith thatpointasendpoint,andconversely,toanyvectortherebelongs anendpoint. To any arrow BC (cf. fig. 1.1) there corresponds exactly one vector (thearrowwith0 asinitialpoint) whichcanbeobtained fromBCbydisplacingitparalleltoitselfsothat 0becomesthe initialpoint.Thevector0Asoobtainedmaythusberepresentedby thearrow30 Thevector0A has manysuchrepresentatives, of course. Sometimeswe shallsay "thevectorBC" andmean“the VectorrepusmtedbyBC". Theset ofall arrowsintheplane (in space) withinitialpoint 0 is called a 2—dimnsional vector space (a. 3<dimensional vector space). Furthermore the following algebraic conventions will be observed: 1) Another(equivalent)definitionwhich,however,isslightlylessrealistic tothebeginner,is:aVectorisacompleteset(Le.asetthatcannotbeex- tended)ofarrows,eachofwhichcanbeobtainedfromanyotheroneby translation(aparalleldisplacement). 2 VECTORS IN THE PLANE AND IN SPACE A1.Addition. To any pair of vectors a=0A, b=OB there correspondsavector0=0Cinthefollowingway:thearrowBC mustbearepresentativeofa,orequivalently,thearrowACmust §—_£ I I / ,’ / / ‘0 ~#0 °lI «,1/ 2a O A D Fig.1.x bearepresentativeofb,or:Cisthefourthvertexofaparallelogram withsides0Aand03(of.fig. 1.2.Thelastformulation,knownas theparallelogram—constmction,isnotunambiguousif0,AandB are collinear). Thisvectorciscalledthesumofaandb, andis denotedby a+b. Fig.1.2 A2.MultiflimtionbyarealnumberA.Toanypairconsistingofa vector a=0A and a real number 2 there corresponds a vector (1=0D,calledtheproductofAanda,denotedbyla.inthefollow- ingway:0,A andDlieona.lineand lengthofOD=|1|~lengthof0A, whilstA andDwillbeonthesameoronoppositesidesof0de- pendingonwhetherI.ispositiveornegative.Illmeanstheabsolute valueof1,i.e.thenon-negativeoneofthenumbersI.and—l;for example [5|=5, l—7]=7, |Ol=0‘(cf. fig. 1.] with7.=2). The

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.