ebook img

Linear Algebra and Analytic Geometry for Physical Sciences PDF

348 Pages·2018·3.228 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Linear Algebra and Analytic Geometry for Physical Sciences

Undergraduate Lecture Notes in Physics Giovanni Landi · Alessandro Zampini Linear Algebra and Analytic Geometry for Physical Sciences Undergraduate Lecture Notes in Physics Undergraduate Lecture Notes in Physics (ULNP) publishes authoritative texts covering topicsthroughoutpureandappliedphysics.Eachtitleintheseriesissuitableasabasisfor undergraduateinstruction,typicallycontainingpracticeproblems,workedexamples,chapter summaries, andsuggestions for further reading. ULNP titles mustprovide at least oneof thefollowing: (cid:129) Anexceptionally clear andconcise treatment ofastandard undergraduate subject. (cid:129) Asolidundergraduate-levelintroductiontoagraduate,advanced,ornon-standardsubject. (cid:129) Anovel perspective oranunusual approach toteaching asubject. ULNPespeciallyencouragesnew,original,andidiosyncraticapproachestophysicsteaching at theundergraduate level. ThepurposeofULNPistoprovideintriguing,absorbingbooksthatwillcontinuetobethe reader’spreferred reference throughout theiracademic career. Series editors Neil Ashby University of Colorado, Boulder, CO, USA William Brantley Department of Physics, Furman University, Greenville, SC, USA Matthew Deady Physics Program, Bard College, Annandale-on-Hudson, NY, USA Michael Fowler Department of Physics, University of Virginia, Charlottesville, VA, USA Morten Hjorth-Jensen Department of Physics, University of Oslo, Oslo, Norway Michael Inglis Department of Physical Sciences, SUNY Suffolk County Community College, Selden, NY, USA More information about this series at http://www.springer.com/series/8917 Giovanni Landi Alessandro Zampini (cid:129) Linear Algebra and Analytic Geometry for Physical Sciences 123 GiovanniLandi Alessandro Zampini University of Trieste INFNSezione diNapoli Trieste Napoli Italy Italy ISSN 2192-4791 ISSN 2192-4805 (electronic) Undergraduate Lecture Notesin Physics ISBN978-3-319-78360-4 ISBN978-3-319-78361-1 (eBook) https://doi.org/10.1007/978-3-319-78361-1 LibraryofCongressControlNumber:2018935878 ©SpringerInternationalPublishingAG,partofSpringerNature2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAG partofSpringerNature Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland To our families Contents 1 Vectors and Coordinate Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Applied Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 More Vector Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Divergence, Rotor, Gradient and Laplacian. . . . . . . . . . . . . . . . 15 2 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1 Definition and Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Vector Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Linear Combinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 Bases of a Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.5 The Dimension of a Vector Space . . . . . . . . . . . . . . . . . . . . . . 33 3 Euclidean Vector Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1 Scalar Product, Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3 Orthonormal Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.4 Hermitian Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.1 Basic Notions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2 The Rank of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3 Reduced Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4 Reduction of Matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.5 The Trace of a Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5 The Determinant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.1 A Multilinear Alternating Mapping . . . . . . . . . . . . . . . . . . . . . 69 5.2 Computing Determinants via a Reduction Procedure. . . . . . . . . 74 5.3 Invertible Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 vii viii Contents 6 Systems of Linear Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.1 Basic Notions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.2 The Space of Solutions for Reduced Systems. . . . . . . . . . . . . . 81 6.3 The Space of Solutions for a General Linear System . . . . . . . . 84 6.4 Homogeneous Linear Systems. . . . . . . . . . . . . . . . . . . . . . . . . 94 7 Linear Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7.1 Linear Transformations and Matrices . . . . . . . . . . . . . . . . . . . . 97 7.2 Basic Notions on Maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7.3 Kernel and Image of a Linear Map . . . . . . . . . . . . . . . . . . . . . 104 7.4 Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.5 Computing the Kernel of a Linear Map . . . . . . . . . . . . . . . . . . 108 7.6 Computing the Image of a Linear Map . . . . . . . . . . . . . . . . . . 111 7.7 Injectivity and Surjectivity Criteria. . . . . . . . . . . . . . . . . . . . . . 114 7.8 Composition of Linear Maps. . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.9 Change of Basis in a Vector Space . . . . . . . . . . . . . . . . . . . . . 118 8 Dual Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 8.1 The Dual of a Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . 125 8.2 The Dirac’s Bra-Ket Formalism. . . . . . . . . . . . . . . . . . . . . . . . 128 9 Endomorphisms and Diagonalization . . . . . . . . . . . . . . . . . . . . . . . 131 9.1 Endomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 9.2 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . 133 9.3 The Characteristic Polynomial of an Endomorphism. . . . . . . . . 138 9.4 Diagonalisation of an Endomorphism. . . . . . . . . . . . . . . . . . . . 143 9.5 The Jordan Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 10 Spectral Theorems on Euclidean Spaces . . . . . . . . . . . . . . . . . . . . . 151 10.1 Orthogonal Matrices and Isometries. . . . . . . . . . . . . . . . . . . . . 151 10.2 Self-adjoint Endomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . 156 10.3 Orthogonal Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 10.4 The Diagonalization of Self-adjoint Endomorphisms. . . . . . . . . 163 10.5 The Diagonalization of Symmetric Matrices . . . . . . . . . . . . . . . 167 11 Rotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 11.1 Skew-Adjoint Endomorphisms. . . . . . . . . . . . . . . . . . . . . . . . . 173 11.2 The Exponential of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 178 11.3 Rotations in Two Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 180 11.4 Rotations in Three Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 182 11.5 The Lie Algebra soð3Þ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 11.6 The Angular Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 11.7 Rigid Bodies and Inertia Matrix. . . . . . . . . . . . . . . . . . . . . . . . 194 Contents ix 12 Spectral Theorems on Hermitian Spaces. . . . . . . . . . . . . . . . . . . . . 197 12.1 The Adjoint Endomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . 197 12.2 Spectral Theory for Normal Endomorphisms . . . . . . . . . . . . . . 203 12.3 The Unitary Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 13 Quadratic Forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 13.1 Quadratic Forms on Real Vector Spaces. . . . . . . . . . . . . . . . . . 213 13.2 Quadratic Forms on Complex Vector Spaces . . . . . . . . . . . . . . 222 13.3 The Minkowski Spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 13.4 Electro-Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 14 Affine Linear Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 14.1 Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 14.2 Lines and Planes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 14.3 General Linear Affine Varieties and Parallelism . . . . . . . . . . . . 245 14.4 The Cartesian Form of Linear Affine Varieties . . . . . . . . . . . . . 249 14.5 Intersection of Linear Affine Varieties . . . . . . . . . . . . . . . . . . . 258 15 Euclidean Affine Linear Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 269 15.1 Euclidean Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 15.2 Orthogonality Between Linear Affine Varieties. . . . . . . . . . . . . 272 15.3 The Distance Between Linear Affine Varieties . . . . . . . . . . . . . 276 15.4 Bundles of Lines and of Planes . . . . . . . . . . . . . . . . . . . . . . . . 283 15.5 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 16 Conic Sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 16.1 Conic Sections as Geometric Loci . . . . . . . . . . . . . . . . . . . . . . 293 16.2 The Equation of a Conic in Matrix Form . . . . . . . . . . . . . . . . . 298 16.3 Reduction to Canonical Form of a Conic: Translations . . . . . . . 301 16.4 Eccentricity: Part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 16.5 Conic Sections and Kepler Motions. . . . . . . . . . . . . . . . . . . . . 309 16.6 Reduction to Canonical Form of a Conic: Rotations . . . . . . . . . 310 16.7 Eccentricity: Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 16.8 Why Conic Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 Appendix A: Algebraic Structures.. .... .... .... .... .... ..... .... 329 Index .... .... .... .... .... ..... .... .... .... .... .... ..... .... 343 Introduction Thisbookoriginatesfromacollectionoflecturenotesthatthefirstauthorprepared at the University of Trieste with Michela Brundu, over a span of fifteen years, together with the more recent one written by the second author. The notes were meant for undergraduate classes on linear algebra, geometry and more generally basic mathematical physics delivered to physics and engineering students, as well as mathematics students in Italy, Germany and Luxembourg. Thebookismainlyintendedtobeaself-containedintroductiontothetheoryof finite-dimensional vector spaces and linear transformations (matrices) with their spectral analysis both on Euclidean and Hermitian spaces, to affine Euclidean geometry as well as to quadratic forms and conic sections. Many topics are introduced and motivated by examples, mostly from physics. They show how a definition is natural and how the main theorems and results are first of all plausible before a proof is given. Following this approach, the book presents a number of examples and exercises, which are meant as a central part in thedevelopmentofthetheory.Theyareallcompletelysolvedandintendedbothto guidethestudenttoappreciatetherelevantformalstructuresandtogiveinseveral cases a proof and a discussion, within a geometric formalism, of results from physics, notably from mechanics (including celestial) and electromagnetism. Being the book intended mainly for students in physics and engineering, we tasked ourselves not to present the mathematical formalism per se. Although we decided,for clarity'ssakeofourreaders,toorganisethebasicsofthetheoryinthe classical terms of definitions and the main results as theorems or propositions, we dooftennotfollowthestandardsequentialformofdefinition—theorem—corollary —example and provided some two hundred and fifty solved problems given as exercises. Chapter 1 of the book presents the Euclidean space used in physics in terms of applied vectors with respect to orthonormal coordinate system, together with the operation of scalar, vector and mixed product. They are used both to describe the motion of a point mass and to introduce the notion of vector field with the most relevant differential operators acting upon them. xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.