ebook img

Linear Algebra Abridged PDF

145 Pages·2016·1.24 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Linear Algebra Abridged

Linear Algebra Abridged Sheldon Axler This file is generated from Linear Algebra Done Right (third edition) by excluding all proofs, examples, and exercises, along with most comments. Learninglinearalgebrawithoutproofs,examples,andexercisesisprobably impossible. Thusthisabridgedversionshouldnotsubstituteforthefullbook. However,thisabridgedversionmaybeusefultostudentsseekingtoreview thestatementsofthemainresultsoflinearalgebra. As a visual aid, definitions are in beige boxes and theorems are in blue boxes. Thenumberingofdefinitionsandtheoremsisthesameasinthefull book. Thus1.1isfollowedinthisabridgedversionby1.3(themissing1.2 correspondstoanexampleinthefullversionthatisnotpresenthere). Thisfileisavailablewithoutcharge. Usershavepermissiontoreadthisfile freelyonelectronicdevicesbutdonothavepermissiontoprintit. ThefullversionofLinearAlgebraDoneRight isavailableatspringer.com andamazon.cominbothprintedandelectronicforms. Afreesamplechapter ofthefullversion,andotherinformation,isavailableatthebook’swebsite: http://linear.axler.net. 13March2016 ©2015 Contents 1 VectorSpaces 1 1.A Rn andCn 2 ComplexNumbers 2 Lists 4 Fn 4 DigressiononFields 7 1.B DefinitionofVectorSpace 8 1.C Subspaces 11 SumsofSubspaces 12 DirectSums 13 2 Finite-DimensionalVectorSpaces 14 2.A SpanandLinearIndependence 15 LinearCombinationsandSpan 15 LinearIndependence 17 2.B Bases 19 2.C Dimension 21 3 LinearMaps 23 3.A TheVectorSpaceofLinearMaps 24 DefinitionandExamplesofLinearMaps 24 AlgebraicOperationsonL.V;W/ 24 LinearAlgebraAbridgedisgeneratedfromLinearAlgebraDoneRight(bySheldonAxler,thirdedition) byexcludingallproofs,examples,andexercises,alongwithmostcomments.ThefullversionofLinear AlgebraDoneRightisavailableatspringer.comandamazon.cominbothprintedandelectronicforms. Contents vii 3.B NullSpacesandRanges 26 NullSpaceandInjectivity 26 RangeandSurjectivity 27 FundamentalTheoremofLinearMaps 28 3.C Matrices 29 RepresentingaLinearMapbyaMatrix 29 AdditionandScalarMultiplicationofMatrices 30 MatrixMultiplication 32 3.D InvertibilityandIsomorphicVectorSpaces 35 InvertibleLinearMaps 35 IsomorphicVectorSpaces 36 LinearMapsThoughtofasMatrixMultiplication 37 Operators 39 3.E ProductsandQuotientsofVectorSpaces 39 ProductsofVectorSpaces 39 ProductsandDirectSums 40 QuotientsofVectorSpaces 41 3.F Duality 44 TheDualSpaceandtheDualMap 44 TheNullSpaceandRangeoftheDualofaLinearMap 45 TheMatrixoftheDualofaLinearMap 47 TheRankofaMatrix 48 4 Polynomials 49 ComplexConjugateandAbsoluteValue 50 UniquenessofCoefficientsforPolynomials 51 TheDivisionAlgorithmforPolynomials 52 ZerosofPolynomials 52 FactorizationofPolynomialsoverC 53 FactorizationofPolynomialsoverR 55 LinearAlgebraAbridgedisgeneratedfromLinearAlgebraDoneRight(bySheldonAxler,thirdedition) byexcludingallproofs,examples,andexercises,alongwithmostcomments.ThefullversionofLinear AlgebraDoneRightisavailableatspringer.comandamazon.cominbothprintedandelectronicforms. viii Contents 5 Eigenvalues,Eigenvectors,andInvariantSubspaces 57 5.A InvariantSubspaces 58 EigenvaluesandEigenvectors 59 RestrictionandQuotientOperators 60 5.B EigenvectorsandUpper-TriangularMatrices 61 PolynomialsAppliedtoOperators 61 ExistenceofEigenvalues 62 Upper-TriangularMatrices 63 5.C EigenspacesandDiagonalMatrices 66 6 InnerProductSpaces 69 6.A InnerProductsandNorms 70 InnerProducts 70 Norms 73 6.B OrthonormalBases 76 LinearFunctionalsonInnerProductSpaces 79 6.C OrthogonalComplementsandMinimizationProblems 80 OrthogonalComplements 80 MinimizationProblems 82 7 OperatorsonInnerProductSpaces 84 7.A Self-AdjointandNormalOperators 85 Adjoints 85 Self-AdjointOperators 86 NormalOperators 88 7.B TheSpectralTheorem 89 TheComplexSpectralTheorem 89 TheRealSpectralTheorem 90 7.C PositiveOperatorsandIsometries 92 PositiveOperators 92 Isometries 93 LinearAlgebraAbridgedisgeneratedfromLinearAlgebraDoneRight(bySheldonAxler,thirdedition) byexcludingallproofs,examples,andexercises,alongwithmostcomments.ThefullversionofLinear AlgebraDoneRightisavailableatspringer.comandamazon.cominbothprintedandelectronicforms. Contents ix 7.D PolarDecompositionandSingularValueDecomposition 94 PolarDecomposition 94 SingularValueDecomposition 95 8 OperatorsonComplexVectorSpaces 97 8.A GeneralizedEigenvectorsandNilpotentOperators 98 NullSpacesofPowersofanOperator 98 GeneralizedEigenvectors 99 NilpotentOperators 100 8.B DecompositionofanOperator 101 DescriptionofOperatorsonComplexVectorSpaces 101 MultiplicityofanEigenvalue 102 BlockDiagonalMatrices 103 SquareRoots 104 8.C CharacteristicandMinimalPolynomials 105 TheCayley–HamiltonTheorem 105 TheMinimalPolynomial 106 8.D JordanForm 107 9 OperatorsonRealVectorSpaces 109 9.A Complexification 110 ComplexificationofaVectorSpace 110 ComplexificationofanOperator 111 TheMinimalPolynomialoftheComplexification 112 EigenvaluesoftheComplexification 112 CharacteristicPolynomialoftheComplexification 114 9.B OperatorsonRealInnerProductSpaces 115 NormalOperatorsonRealInnerProductSpaces 115 IsometriesonRealInnerProductSpaces 117 10 TraceandDeterminant 118 10.A Trace 119 ChangeofBasis 119 LinearAlgebraAbridgedisgeneratedfromLinearAlgebraDoneRight(bySheldonAxler,thirdedition) byexcludingallproofs,examples,andexercises,alongwithmostcomments.ThefullversionofLinear AlgebraDoneRightisavailableatspringer.comandamazon.cominbothprintedandelectronicforms. x Contents Trace: AConnectionBetweenOperatorsandMatrices 121 10.B Determinant 123 DeterminantofanOperator 123 DeterminantofaMatrix 125 TheSignoftheDeterminant 129 Volume 130 PhotoCredits 135 Index 136 LinearAlgebraAbridgedisgeneratedfromLinearAlgebraDoneRight(bySheldonAxler,thirdedition) byexcludingallproofs,examples,andexercises,alongwithmostcomments.ThefullversionofLinear AlgebraDoneRightisavailableatspringer.comandamazon.cominbothprintedandelectronicforms. CHAPTER 1 RenéDescartesexplaininghis worktoQueenChristinaof Sweden. Vectorspacesarea generalizationofthe descriptionofaplaneusing twocoordinates,aspublished byDescartesin1637. Vector Spaces Linearalgebraisthestudyoflinearmapsonfinite-dimensionalvectorspaces. Eventuallywewilllearnwhatallthesetermsmean. Inthischapterwewill definevectorspacesanddiscusstheirelementaryproperties. In linear algebra, better theorems and more insight emerge if complex numbers are investigated along with real numbers. Thus we will begin by introducingthecomplexnumbersandtheirbasicproperties. We will generalize the examples of a plane and ordinary space to Rn andCn,whichwethenwillgeneralizetothenotionofavectorspace. The elementarypropertiesofavectorspacewillalreadyseemfamiliartoyou. Thenournexttopicwillbesubspaces,whichplayaroleforvectorspaces analogoustotheroleplayedbysubsetsforsets. Finally,wewilllookatsums ofsubspaces(analogoustounionsofsubsets)anddirectsumsofsubspaces (analogoustounionsofdisjointsets). LEARNING OBJECTIVES FOR THIS CHAPTER basicpropertiesofthecomplexnumbers Rn andCn vectorspaces subspaces sumsanddirectsumsofsubspaces LinearAlgebraAbridgedisgeneratedfromLinearAlgebraDoneRight(bySheldonAxler,thirdedition) byexcludingallproofs,examples,andexercises,alongwithmostcomments.ThefullversionofLinear AlgebraDoneRightisavailableatspringer.comandamazon.cominbothprintedandelectronicforms. 2 CHAPTER 1 VectorSpaces 1.A Rn and Cn ComplexNumbers 1.1 Definition complexnumbers (cid:15) Acomplexnumberisanorderedpair.a;b/,wherea;b 2 R,but wewillwritethisasaCbi. (cid:15) ThesetofallcomplexnumbersisdenotedbyC: C D faCbi W a;b 2 Rg: (cid:15) AdditionandmultiplicationonC aredefinedby .aCbi/C.c Cdi/ D .aCc/C.bCd/i; .aCbi/.c Cdi/ D .ac (cid:0)bd/C.ad Cbc/iI herea;b;c;d 2 R. Ifa 2 R,weidentifyaC0i withtherealnumbera. Thuswecanthink ofR asasubsetofC. Wealsousuallywrite0Cbi asjustbi,andweusually write0C1i asjusti. Using multiplication as defined above, you should verify that i2 D (cid:0)1. Donotmemorizetheformulafortheproductoftwocomplexnumbers;you canalwaysrederiveitbyrecallingthati2 D (cid:0)1andthenusingtheusualrules ofarithmetic(asgivenby1.3). 1.3 Properties of complex arithmetic commutativity ˛Cˇ D ˇC˛ and˛ˇ D ˇ˛ forall˛;ˇ 2 C; associativity .˛Cˇ/C(cid:21) D ˛C.ˇC(cid:21)/and.˛ˇ/(cid:21) D ˛.ˇ(cid:21)/forall˛;ˇ;(cid:21) 2 C; identities (cid:21)C0 D (cid:21)and(cid:21)1 D (cid:21)forall(cid:21) 2 C; additiveinverse forevery˛ 2 C,thereexistsauniqueˇ 2 C suchthat˛Cˇ D 0; multiplicativeinverse forevery˛ 2 C with˛ ¤ 0,thereexistsauniqueˇ 2 C suchthat ˛ˇ D 1; distributiveproperty (cid:21).˛Cˇ/ D (cid:21)˛C(cid:21)ˇ forall(cid:21);˛;ˇ 2 C. LinearAlgebraAbridgedisgeneratedfromLinearAlgebraDoneRight(bySheldonAxler,thirdedition) byexcludingallproofs,examples,andexercises,alongwithmostcomments.ThefullversionofLinear AlgebraDoneRightisavailableatspringer.comandamazon.cominbothprintedandelectronicforms. SECTION 1.A RnandCn 3 The properties above are proved using the familiar properties of real numbersandthedefinitionsofcomplexadditionandmultiplication. 1.5 Definition (cid:0)˛,subtraction,1=˛,division Let˛;ˇ 2 C. (cid:15) Let (cid:0)˛ denote the additive inverse of ˛. Thus (cid:0)˛ is the unique complexnumbersuchthat ˛C.(cid:0)˛/ D 0: (cid:15) SubtractiononC isdefinedby ˇ(cid:0)˛ D ˇC.(cid:0)˛/: (cid:15) For˛ ¤ 0,let1=˛denotethemultiplicativeinverseof˛. Thus1=˛ istheuniquecomplexnumbersuchthat ˛.1=˛/ D 1: (cid:15) DivisiononC isdefinedby ˇ=˛ D ˇ.1=˛/: So that we can conveniently make definitions and prove theorems that applytobothrealandcomplexnumbers,weadoptthefollowingnotation: 1.6 Notation F Throughoutthisbook,F standsforeitherR orC. ThusifweproveatheoreminvolvingF,wewillknowthatitholdswhenF is replacedwithR andwhenF isreplacedwithC. Elements of F are called scalars. The word “scalar”, a fancy word for “number”,isoftenusedwhenwewanttoemphasizethatanobjectisanumber, asopposedtoavector(vectorswillbedefinedsoon). For˛ 2 F andmapositiveinteger,wedefine˛m todenotetheproductof ˛ withitselfmtimes: ˛m D ˛(cid:1)(cid:1)(cid:1)˛: „ƒ‚… mtimes Clearly.˛m/n D ˛mn and.˛ˇ/m D ˛mˇm forall˛;ˇ 2 F andallpositive integersm;n. LinearAlgebraAbridgedisgeneratedfromLinearAlgebraDoneRight(bySheldonAxler,thirdedition) byexcludingallproofs,examples,andexercises,alongwithmostcomments.ThefullversionofLinear AlgebraDoneRightisavailableatspringer.comandamazon.cominbothprintedandelectronicforms. 4 CHAPTER 1 VectorSpaces Lists TogeneralizeR2 andR3 tohigherdimensions,wefirstneedtodiscussthe conceptoflists. 1.8 Definition list,length Suppose n is a nonnegative integer. A list of length n is an ordered collection of n elements (which might be numbers, other lists, or more abstractentities)separatedbycommasandsurroundedbyparentheses. A listoflengthnlookslikethis: .x ;:::;x /: 1 n Twolistsareequalifandonlyiftheyhavethesamelengthandthesame elementsinthesameorder. Thusalistoflength2isanorderedpair,andalistoflength3isanordered triple. Sometimes we will use the word list without specifying its length. Re- member, however, that by definition each list has a finite length that is a nonnegativeinteger. Thusanobjectthatlookslike .x ;x ;:::/; 1 2 whichmightbesaidtohaveinfinitelength,isnotalist. Alistoflength0lookslikethis: ./. Weconsidersuchanobjecttobea listsothatsomeofourtheoremswillnothavetrivialexceptions. Listsdifferfromsetsintwoways: inlists,ordermattersandrepetitions havemeaning;insets,orderandrepetitionsareirrelevant. Fn To define the higher-dimensional analogues of R2 and R3, we will simply replace R with F (which equals R or C) and replace the 2 or 3 with an arbitrarypositiveinteger. Specifically,fixapositiveintegernfortherestof thissection. 1.10 Definition Fn Fn isthesetofalllistsoflengthnofelementsofF: Fn D f.x ;:::;x / W x 2 F forj D 1;:::;ng: 1 n j For .x ;:::;x / 2 Fn and j 2 f1;:::;ng, we say that x is the jth 1 n j coordinateof.x ;:::;x /. 1 n LinearAlgebraAbridgedisgeneratedfromLinearAlgebraDoneRight(bySheldonAxler,thirdedition) byexcludingallproofs,examples,andexercises,alongwithmostcomments.ThefullversionofLinear AlgebraDoneRightisavailableatspringer.comandamazon.cominbothprintedandelectronicforms.

Description:
Linear Algebra Abridged. Sheldon Axler. This file is generated from Linear Algebra Done Right (third edition) by excluding all proofs, examples, and
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.