ebook img

linear algebra PDF

608 Pages·2017·3.12 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview linear algebra

with Open Texts A First Course in LINEAR ALGEBRA an Open Text BASE TEXTBOOK VERSION 2017 – REVISION A ADAPTABLE|ACCESSIBLE|AFFORDABLE by Lyryx Learning based on the original text by K. Kuttler Creative CommonsLicense (CC BY) a d v a n c i n g l e a r n i n g Champions of Access to Knowledge ONLINE OPEN TEXT ASSESSMENT All digital forms of access to our high-quality We have been developing superior online for- open texts are entirely FREE! All content is mativeassessmentformorethan15years. Our reviewed for excellence and is wholly adapt- questions are continuously adapted with the able; custom editions are produced by Lyryx content and reviewed for quality and sound for those adopting Lyryx assessment. Access pedagogy. To enhance learning, students re- to the original source files is also open to any- ceive immediate personalized feedback. Stu- one! dent grade reports and performance statistics are alsoprovided. INSTRUCTOR SUPPORT SUPPLEMENTS Access to our in-house support team is avail- Additional instructor resources are also freely able7 days/weektoprovidepromptresolution accessible. Product dependent, these supple- to both student and instructor inquiries. In ad- mentsinclude: fullsetsofadaptableslidesand dition,weworkone-on-onewithinstructorsto lecture notes, solutions manuals, and multiple provide a comprehensive system, customized choice question banks with an exam building for their course. This can include adapting the tool. text,managingmultiplesections,and more! Contact Lyryx Today! [email protected] a d v a n c i n g l e a r n i n g A First Course in Linear Algebra an Open Text BE A CHAMPION OF OER! Contributesuggestionsforimprovements,newcontent,orerrata: A newtopic A new example An interestingnewquestion A neworbetterproofto an existingtheorem Anyothersuggestionsto improvethematerial Contact Lyryxat [email protected]. CONTRIBUTIONS IlijasFarah,YorkUniversity KenKuttler,BrighamYoungUniversity LyryxLearningTeam BruceBauslaugh JenniferMacKenzie PeterChow TamsynMurnaghan NathanFriess BogdanSava Stephanie Keyowski LarissaStone ClaudeLaflamme RyanYee MarthaLaflamme EhsunZahedi LICENSE Creative CommonsLicense (CC BY): Thistext,includingtheart and illustrations,are availableunder theCreativeCommonslicense(CCBY), allowinganyonetoreuse,revise,remixand redistributethetext. To viewacopyofthislicense, visithttps://creativecommons.org/licenses/by/4.0/ a d v a n c i n g l e a r n i n g A First Course in Linear Algebra an Open Text Base TextRevisionHistory Current Revision: Version2017 — RevisionA Extensiveedits,additions,andrevisionshavebeencompletedbytheeditorialstaffatLyryxLearning. Allnewcontent(textandimages)isreleasedunderthesamelicenseasnotedabove. • Lyryx:Frontmatterhasbeenupdatedincludingcover,copyright,andrevisionpages. 2017A • I.Farah: contributededitsandrevisions,particularlytheproofsinthePropertiesofDeterminantsII: SomeImportantProofssection • Lyryx: The text has been updated with the addition of subsections on Resistor Networks and the MatrixExponentialbasedonoriginalmaterialbyK.Kuttler. 2016B • Lyryx:Newexample7.35onRandomWalksdeveloped. • Lyryx: The layout and appearanceof the text has been updated, includingthe title page and newly 2016A designedbackcover. • Lyryx: The content was modified and adapted with the addition of new material and several im- agesthroughout. 2015A • Lyryx:Additionalexamplesandproofswereaddedtoexistingmaterialthroughout. • OriginaltextbyK.KuttlerofBrighamYoungUniversity. ThatversionisusedunderCreativeCom- mons license CC BY (https://creativecommons.org/licenses/by/3.0/) made possible by 2012A fundingfromTheSaylorFoundation’sOpenTextbookChallenge.SeeElementaryLinearAlgebrafor moreinformationandtheoriginalversion. Contents Contents iii Preface 1 1 Systems ofEquations 3 1.1 SystemsofEquations,Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 SystemsOfEquations,AlgebraicProcedures . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.1 Elementary Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.2 Gaussian Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.2.3 UniquenessoftheReduced Row-EchelonForm . . . . . . . . . . . . . . . . . . 25 1.2.4 Rank andHomogeneousSystems . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.2.5 Balancing Chemical Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.2.6 DimensionlessVariables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1.2.7 An Applicationto ResistorNetworks . . . . . . . . . . . . . . . . . . . . . . . . 38 2 Matrices 53 2.1 MatrixArithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.1.1 AdditionofMatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.1.2 Scalar MultiplicationofMatrices . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.1.3 MultiplicationofMatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.1.4 Theijth Entry ofaProduct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.1.5 Properties ofMatrixMultiplication . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.1.6 TheTranspose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.1.7 TheIdentityand Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 2.1.8 FindingtheInverseofa Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2.1.9 Elementary Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 2.1.10 Moreon MatrixInverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 2.2 LU Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 2.2.1 FindingAn LU FactorizationBy Inspection . . . . . . . . . . . . . . . . . . . . . 99 2.2.2 LU Factorization,MultiplierMethod . . . . . . . . . . . . . . . . . . . . . . . . 100 2.2.3 SolvingSystemsusingLU Factorization . . . . . . . . . . . . . . . . . . . . . . . 101 2.2.4 JustificationfortheMultiplierMethod . . . . . . . . . . . . . . . . . . . . . . . . 102 iii iv CONTENTS 3 Determinants 107 3.1 BasicTechniquesand Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.1.1 Cofactors and2 2 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . 107 × 3.1.2 TheDeterminantofaTriangularMatrix . . . . . . . . . . . . . . . . . . . . . . . 112 3.1.3 Properties ofDeterminantsI: Examples . . . . . . . . . . . . . . . . . . . . . . . 114 3.1.4 Properties ofDeterminantsII: SomeImportantProofs . . . . . . . . . . . . . . . 118 3.1.5 FindingDeterminantsusingRowOperations . . . . . . . . . . . . . . . . . . . . 123 3.2 ApplicationsoftheDeterminant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 3.2.1 A FormulafortheInverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 3.2.2 Cramer’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 3.2.3 PolynomialInterpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 4 Rn 145 4.1 Vectorsin Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 4.2 Algebrain Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 4.2.1 AdditionofVectors in Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 4.2.2 Scalar MultiplicationofVectors inRn . . . . . . . . . . . . . . . . . . . . . . . . 150 4.3 GeometricMeaningofVectorAddition . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 4.4 LengthofaVector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 4.5 GeometricMeaningofScalar Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . 159 4.6 ParametricLines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 4.7 TheDot Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 4.7.1 TheDot Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 4.7.2 TheGeometricSignificanceoftheDotProduct . . . . . . . . . . . . . . . . . . . 170 4.7.3 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 4.8 Planes inRn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 4.9 TheCross Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 4.9.1 TheBox Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 4.10 Spanning,LinearIndependenceand Basisin Rn . . . . . . . . . . . . . . . . . . . . . . . 192 4.10.1 Spanning Set ofVectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 4.10.2 Linearly IndependentSet ofVectors . . . . . . . . . . . . . . . . . . . . . . . . . 194 4.10.3 A Short Applicationto Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . 200 4.10.4 Subspaces and Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 4.10.5 Row Space, ColumnSpace, and NullSpace ofaMatrix . . . . . . . . . . . . . . . 211 4.11 Orthogonalityand theGram SchmidtProcess . . . . . . . . . . . . . . . . . . . . . . . . 232 4.11.1 Orthogonaland OrthonormalSets . . . . . . . . . . . . . . . . . . . . . . . . . . 233 4.11.2 OrthogonalMatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

Description:
Matrix Exponential based on original material by K. Kuttler. • Lyryx: New funding from The Saylor Foundation's Open Textbook Challenge. 7 Spectral Theory. 347 . Where possible, applications of key concepts are explored.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.