with Open Texts A First Course in LINEAR ALGEBRA an Open Text BASE TEXTBOOK VERSION 2017 – REVISION A ADAPTABLE|ACCESSIBLE|AFFORDABLE by Lyryx Learning based on the original text by K. Kuttler Creative CommonsLicense (CC BY) a d v a n c i n g l e a r n i n g Champions of Access to Knowledge ONLINE OPEN TEXT ASSESSMENT All digital forms of access to our high-quality We have been developing superior online for- open texts are entirely FREE! All content is mativeassessmentformorethan15years. Our reviewed for excellence and is wholly adapt- questions are continuously adapted with the able; custom editions are produced by Lyryx content and reviewed for quality and sound for those adopting Lyryx assessment. Access pedagogy. To enhance learning, students re- to the original source files is also open to any- ceive immediate personalized feedback. Stu- one! dent grade reports and performance statistics are alsoprovided. INSTRUCTOR SUPPORT SUPPLEMENTS Access to our in-house support team is avail- Additional instructor resources are also freely able7 days/weektoprovidepromptresolution accessible. Product dependent, these supple- to both student and instructor inquiries. In ad- mentsinclude: fullsetsofadaptableslidesand dition,weworkone-on-onewithinstructorsto lecture notes, solutions manuals, and multiple provide a comprehensive system, customized choice question banks with an exam building for their course. This can include adapting the tool. text,managingmultiplesections,and more! Contact Lyryx Today! [email protected] a d v a n c i n g l e a r n i n g A First Course in Linear Algebra an Open Text BE A CHAMPION OF OER! Contributesuggestionsforimprovements,newcontent,orerrata: A newtopic A new example An interestingnewquestion A neworbetterproofto an existingtheorem Anyothersuggestionsto improvethematerial Contact Lyryxat [email protected]. CONTRIBUTIONS IlijasFarah,YorkUniversity KenKuttler,BrighamYoungUniversity LyryxLearningTeam BruceBauslaugh JenniferMacKenzie PeterChow TamsynMurnaghan NathanFriess BogdanSava Stephanie Keyowski LarissaStone ClaudeLaflamme RyanYee MarthaLaflamme EhsunZahedi LICENSE Creative CommonsLicense (CC BY): Thistext,includingtheart and illustrations,are availableunder theCreativeCommonslicense(CCBY), allowinganyonetoreuse,revise,remixand redistributethetext. To viewacopyofthislicense, visithttps://creativecommons.org/licenses/by/4.0/ a d v a n c i n g l e a r n i n g A First Course in Linear Algebra an Open Text Base TextRevisionHistory Current Revision: Version2017 — RevisionA Extensiveedits,additions,andrevisionshavebeencompletedbytheeditorialstaffatLyryxLearning. Allnewcontent(textandimages)isreleasedunderthesamelicenseasnotedabove. • Lyryx:Frontmatterhasbeenupdatedincludingcover,copyright,andrevisionpages. 2017A • I.Farah: contributededitsandrevisions,particularlytheproofsinthePropertiesofDeterminantsII: SomeImportantProofssection • Lyryx: The text has been updated with the addition of subsections on Resistor Networks and the MatrixExponentialbasedonoriginalmaterialbyK.Kuttler. 2016B • Lyryx:Newexample7.35onRandomWalksdeveloped. • Lyryx: The layout and appearanceof the text has been updated, includingthe title page and newly 2016A designedbackcover. • Lyryx: The content was modified and adapted with the addition of new material and several im- agesthroughout. 2015A • Lyryx:Additionalexamplesandproofswereaddedtoexistingmaterialthroughout. • OriginaltextbyK.KuttlerofBrighamYoungUniversity. ThatversionisusedunderCreativeCom- mons license CC BY (https://creativecommons.org/licenses/by/3.0/) made possible by 2012A fundingfromTheSaylorFoundation’sOpenTextbookChallenge.SeeElementaryLinearAlgebrafor moreinformationandtheoriginalversion. Contents Contents iii Preface 1 1 Systems ofEquations 3 1.1 SystemsofEquations,Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 SystemsOfEquations,AlgebraicProcedures . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.1 Elementary Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.2 Gaussian Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.2.3 UniquenessoftheReduced Row-EchelonForm . . . . . . . . . . . . . . . . . . 25 1.2.4 Rank andHomogeneousSystems . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.2.5 Balancing Chemical Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.2.6 DimensionlessVariables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1.2.7 An Applicationto ResistorNetworks . . . . . . . . . . . . . . . . . . . . . . . . 38 2 Matrices 53 2.1 MatrixArithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.1.1 AdditionofMatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.1.2 Scalar MultiplicationofMatrices . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.1.3 MultiplicationofMatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.1.4 Theijth Entry ofaProduct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.1.5 Properties ofMatrixMultiplication . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.1.6 TheTranspose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.1.7 TheIdentityand Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 2.1.8 FindingtheInverseofa Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2.1.9 Elementary Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 2.1.10 Moreon MatrixInverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 2.2 LU Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 2.2.1 FindingAn LU FactorizationBy Inspection . . . . . . . . . . . . . . . . . . . . . 99 2.2.2 LU Factorization,MultiplierMethod . . . . . . . . . . . . . . . . . . . . . . . . 100 2.2.3 SolvingSystemsusingLU Factorization . . . . . . . . . . . . . . . . . . . . . . . 101 2.2.4 JustificationfortheMultiplierMethod . . . . . . . . . . . . . . . . . . . . . . . . 102 iii iv CONTENTS 3 Determinants 107 3.1 BasicTechniquesand Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.1.1 Cofactors and2 2 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . 107 × 3.1.2 TheDeterminantofaTriangularMatrix . . . . . . . . . . . . . . . . . . . . . . . 112 3.1.3 Properties ofDeterminantsI: Examples . . . . . . . . . . . . . . . . . . . . . . . 114 3.1.4 Properties ofDeterminantsII: SomeImportantProofs . . . . . . . . . . . . . . . 118 3.1.5 FindingDeterminantsusingRowOperations . . . . . . . . . . . . . . . . . . . . 123 3.2 ApplicationsoftheDeterminant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 3.2.1 A FormulafortheInverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 3.2.2 Cramer’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 3.2.3 PolynomialInterpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 4 Rn 145 4.1 Vectorsin Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 4.2 Algebrain Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 4.2.1 AdditionofVectors in Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 4.2.2 Scalar MultiplicationofVectors inRn . . . . . . . . . . . . . . . . . . . . . . . . 150 4.3 GeometricMeaningofVectorAddition . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 4.4 LengthofaVector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 4.5 GeometricMeaningofScalar Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . 159 4.6 ParametricLines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 4.7 TheDot Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 4.7.1 TheDot Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 4.7.2 TheGeometricSignificanceoftheDotProduct . . . . . . . . . . . . . . . . . . . 170 4.7.3 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 4.8 Planes inRn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 4.9 TheCross Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 4.9.1 TheBox Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 4.10 Spanning,LinearIndependenceand Basisin Rn . . . . . . . . . . . . . . . . . . . . . . . 192 4.10.1 Spanning Set ofVectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 4.10.2 Linearly IndependentSet ofVectors . . . . . . . . . . . . . . . . . . . . . . . . . 194 4.10.3 A Short Applicationto Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . 200 4.10.4 Subspaces and Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 4.10.5 Row Space, ColumnSpace, and NullSpace ofaMatrix . . . . . . . . . . . . . . . 211 4.11 Orthogonalityand theGram SchmidtProcess . . . . . . . . . . . . . . . . . . . . . . . . 232 4.11.1 Orthogonaland OrthonormalSets . . . . . . . . . . . . . . . . . . . . . . . . . . 233 4.11.2 OrthogonalMatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Description: