ebook img

Line-Interactive Transformerless Uninterruptible Power Supply (UPS) PDF

19 Pages·2017·6.92 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Line-Interactive Transformerless Uninterruptible Power Supply (UPS)

energies Article Line-Interactive Transformerless Uninterruptible Power Supply (UPS) with a Fuel Cell as the Primary Source MuhammadIftikhar1,MuhammadAamir2,*,AsadWaqar2 ID,Naila2,FahadBinMuslim3 andImtiazAlam2 ID 1 DepartmentofElectricalEngineering,UniversityofEngineeringandTechnology,25000Peshawar,Pakistan; [email protected] 2 DepartmentofElectricalEngineering,BahriaUniversity,44000Islamabad,Pakistan; [email protected](A.W.);[email protected](N.); [email protected](I.A.) 3 DepartmentofElectricalEngineering,IqraUniversity,44000Islamabad,Pakistan;[email protected] * Correspondence:[email protected];Tel.:+92-345-9031014 Received:8December2017;Accepted:7February2018;Published:2March2018 Abstract: Thispaperpresentsline-interactivetransformerlessUninterruptiblePowerSupply(UPS) with a fuel cell as the prime energy source. The proposed UPS consists of three major parts (i.e., an output inverter, a unidirectional DC–DC converter, and a battery charger/discharger). Non-isolatedtopologiesofboththeunidirectionalconverterandbatterycharger/dischargerensure transformerlessoperationoftheUPSsystem. Anewtopologyofhighgainconverterisemployedfor boostingthelowvoltageofthefuelcelltoahigherDClinkvoltage,withminimumsemiconductor count,andhighefficiency.Ahigh-gainbatterycharger/dischargerrealizesthebidirectionaloperation between the DC link and the battery bank. Besides, it regulates the DC link voltage during the cold start of fuel cells and keeps the battery bank voltage to only 24 V. A new inverter control schemeisintroducedthatregulatestheoutputvoltageandminimizesthetotalharmonicdistortion for non-linear loading condition. The proposed control scheme integrates proportional-resonant controlwithslidemodecontrol,whichimprovesthecontroller’sperformanceintransientconditions. TheproposedUPSsystemisvalidatedbydevelopinga1-kVAexperimentalprototype. Keywords:fuelcell;line-interactive;uninterruptiblepowersupply;transformerless;DC–DCconverter 1. Introduction Uninterruptiblepowersupplies(UPS)areextensivelydeliveringbackuppowertosensitiveloads (e.g., dataservers, medicalequipment, communicationdevices, etc.)[1,2]. NormallyUPSsystems provide high efficiency and high reliability, with an additional important feature of fast response duringchangeofmodes[3,4]. Generally, a lead acid or Ni–Cad battery is used to provide backup power in a UPS system. However,thebattery-basedUPShasdisadvantagesofshortlifespan,lowreliability,highmaintenance costofthebatteries[5],etc. Ontheotherhand,fuelcellshavealongerbackuptime,higherpower density,lowermaintenancecost,andlongerlifetime,andhenceareanexcellentalternativetolead acidbatteries[6–9]. Line-interactiveUPSisasuitablechoiceforhybridenergystoragesystem. Inline-interactive UPS, the main grid and local load are connected in parallel with the UPS system. They are more reliable,withhighefficiency,simplestructure,andaremuchcheaperascomparedtotheonlineUPS. However,owingtotheslowerfuelcellresponse,ahybridstoragesystemisintroducedtoensurethe Energies 2018,11,542;doi:10.3390/en11030542 www.mdpi.com/journal/energies Energies 2018,11,542 2of19 appropriateUPSoperationunderdifferentloadingconditions. DifferenthybridenergystorageUPS systemsarepresentedin[10–16]. Mostofthesesystemsemployhigh-frequencyisolatedconvertersfor theparalleloperationofdifferentenergystoragesources. However,anextranumberofactiveswitches andgalvanicisolationaffecttheoverallefficiencyofthesystemaswellasitsreliability. Ontheother hand,atransformerlesssystemcanreplaceisolatedsystemsbyprovidinghigherefficiency,higher powerdensity,lowercost,andsmallervolumeandweight. Fuel-cell-basedtransformerlessUPSsystemshavenotbeenextensivelyinvestigatedyet. Inthis paper,atransformerless,line-interactivehybridpowersourceUPSsystemhasbeenproposedwitha fuelcellasthemajorsourceofpower. Ahigh-gainbidirectionalboostconverterhasbeenemployed betweenthebatterybankandtheDClink. Atthesametime, itworksasaunidirectionalDC–DC converter(boostmodeonly),steppingupthelowerfuelcellvoltagetoamuchhigherDClinkvoltage. Sincethebatteryprovidespowerforaveryshorttime,i.e.,coldstartoffuelcellsandtransients,asmall battery bank is more appropriate for this purpose. A high-gain bidirectional charger/discharger ensurestheuseofalowbatterybankofmerely24V(singlebattery),whicheliminatestheproblems associatedwiththecombinationofseries-connectedbatteries. SincetheconnectedloadintheUPS system is non-linear, a novel robust inverter control scheme has been introduced by integrating proportional-resonant(PR)withslidemodeandcontrol. Thecontrollerreducesthetotalharmonics distortion(THD)foranon-linearloadandregulatestheoutputinbothimpulsiveandstepchangein load. A1kVAexperimentalprototypeoftheUPSsystemhasbeendevelopedinthelaboratory,which validatesitsperformanceindynamicandsteadystatecondition. Theproposedsystemoffersseveral benefitssuchas: 1. Ahigh-gainDC–DCconverterisused,whichbooststhelowvoltageofthefuelcelltoahigher DClinkvoltage. 2. Anovelbatterycharging/dischargingcircuithasbeenintroduced,whichcausesasignificant reductioninthebatterybanksize. 3. Arobustinvertercontrolschemehasbeenproposedforbothimpulseandnonlinearloads. 4. Theproposedsystemhashigherefficiencyandlowercostascomparedtoitscontemporaries. The remainder of the paper is organized in the following way. In Section 2, the proposed line-interactiveUPSsystemisexplained,includingtheconvertertopology. InSection3,anexplanation of the control of different subparts of the UPS system is presented. Experimental results from a 1-kWlaboratoryprototypearepresentedinSection4duringloadvariations. Finally,conclusionsare presentedinSection5. 2. CircuitDescription The proposed system consists of a unidirectional DC–DC converter connected to a fuel cell, H-bridgeinverteratthebackend,andhigh-gainboostconverterconnectedwiththebatterybankof theUPSsystem.Figure1showsaschematicoftheproposedfuel-cell-basedline-interactiveUPSsystem. TheUPSsystemiscomposedofaunidirectionalconverter,abidirectionalbatterycharging/discharging unit,andanH-bridgeinverter. Theprimarysourceofenergyisafuelcell,whilethebatterybankis utilizedasthetransientenergystorage. Theunidirectionalconverteractsasaninterfacebetweenthe low-voltagefuelcellandthehigh-voltageDClinkoftheinverter. Similarly,abidirectionalconverter isemployedasabatterycharger/discharger,withhighvoltageconversionratio,whichshrinksthe batterybankconsiderably. AnewcontrolschemehasbeenproposedfortheH-bridgeinverterthat accomplishesoutputregulationforbothlinearandnon-linearloadingconditions. Energies 2018,11,542 3of19 Energies 2018, 11, x FOR PEER REVIEW 3 of 19 Energies 2018, 11, x FOR PEER REVIEW 3 of 19 FiguFrigeu1r.e P1r. oPproopsoesdedci cricrucuititd diaiaggrraamm ooff lliinnee--ininteterarcatcivtiev teratrnasnfosrfmoremrleesrsl eUsPsSU sPySstesmys. tem. 2.1. M2.1o.d MesoodfesO opf eOFraipgteuiroarneti o1n. P roposed circuit diagram of line-interactive transformerless UPS system. The proposed UPS system has two distinct operational modes, the grid mode and the fuel 2T.h1.e Mpordoesp oofs OedperUatPioSn system has two distinct operational modes, the grid mode and the fuel cell/battery-powered mode, as depicted in Figure 2. cell/battery-poweredmode,asdepictedinFigure2. The proposed UPS system has two distinct operational modes, the grid mode and the fuel Grid mode: Gridcmello/bdaet:tery-powered mode, as depicted in Figure 2. In case of a stable grid voltage and no power failure, the grid mode of the UPS is active. The grid Incaseofastablegridvoltageandnopowerfailure,thegridmodeoftheUPSisactive. Thegrid dGirreidct lmy oddriev: es the load. Moreover, the fuel cell feeds the unidirectional converter for regulating the DC directlydrivestheload. Moreover,thefuelcellfeedstheunidirectionalconverterforregulatingthe link aInnd c achsea rogfi na gs ttahbel eb agtrtiedr yv.o Tlthaeg eb iadnirde cntoio pnoawl ceorn fvaeilruterer ,c thhaer ggerisd a mndo ddeis cohf athrgee Us PthSe i bs aatctteirvye .b Tahnek .g rid DClinkandchargingthebattery. Thebidirectionalconverterchargesanddischargesthebatterybank. Fduireelc ctleyl ld/briavtetes rtyh-ep loowade.r Medo mreoovdeer: , the fuel cell feeds the unidirectional converter for regulating the DC Fuellcinekll /aIbnna dtt hcteeh rasyrcg-epinnoagwr tiohe ero ebfd apttmoewroyed. rTe bh:ree baikddiroewctnio onra la cnoyn vveorlttearg ceh saargge as ta tnhde diinspchuat,r gthese tmhea bgantetetircy cboanntka.c tor (FIMnueCthl) ceoespllce/ebnnsa,at trceiarouyso-pifnogpw otehwreee dgr rmbidroe tdaoek :dd ioscwonnnoercta fnryomvo tlhtea gloeasda.g Naotwth, ethien pfuuetl, ctehlel amndag tnhee tbicatctoernyt abcatnokr (MC) openssu,pcpalIuyns pitnhoewg setchre etnoag trrhiioed lootfoa dpd.o iHwsceeorre nb tnrheeeac ektndferorowgmyn stothor erainlnogya ddveo.vlNtiacego,ew i .s,ea.t,gh t heaetf ubthaeetlt ecinreypll ubaat,nn tdkh,e tp hmleayabsga nttwetteoirc iy mcobpnaotnratkcatnostru pply power(oMrletCos). tFohiperesltnolsya,, dctah.ueH sbienargtet ettrhhieee sg ehrniadne rdtogle yd tishstceoo srnhinnoegrctt d tfiemrovemi cl eot,haide. e lm.o,aitsdhm.e Nabtocahwt tt,e otr hyoev befuarcenolk mc,eepl ll taahnye dss lttowhweo bdiaymtnteparmoyr ibctasa nnotkf roles. Firstltsyhu,ept fhpuleeylb pcaeotlwtl.e eSrrie etcoso nthhdaelny ld,o talhede.t bhHaeetrtseehr tyoh rbet aetnnimke roegvyleo rsactoodrmimnegsi s dtmheeva iitnccesh,t ait.neot.,ao tnvheeeo rbucaso tpmteorewy tebhra efnlsukl,co tpuwlaaytdisoy ntnwsa obm eicmiacpusosoerf ttahtnhete fuel ProFlCes s. tFacirksst lmy,a tyh eta bkaet steormiees thimaned ilne otrhdee srh too ratt ttaimine t hloea rde qmuiisrmeda tocuht ptou to vvoelrtcaogme ea st hthee s hloywdr dogyenna mcaincsn ootf cell. Secondly, the battery bank overcomes the instantaneous power fluctuations because the PFC bthee f efude fla cset lel.n Soeucgohn.d ly, the battery bank overcomes the instantaneous power fluctuations because the stacksmaytakesometimeinordertoattaintherequiredoutputvoltageasthehydrogencannotbe PFC stacks may take some time in order to attain the required output voltage as the hydrogen cannot fedfastenough. be fed fast enough. Figure 2. Operational modes of the line-interactive UPS system. Figure 2. Op erational modes of the line-interactive UPS system. Figure2.Operationalmodesoftheline-interactiveUPSsystem. 2.2. ModelofFuelCell A1kW30Vpolymer-electrolytemembranefuelcell(PEMFC)modelbasedon[17]isusedinthe prop osedsystem. ThetotalvoltageacrosstheFCisthesumoftheactivationovervoltage,Nernst’s Energies 2018, 11, x FOR PEER REVIEW 4 of 19 Energies 2018,11,542 4of19 2.2. Model of Fuel Cell voltage,cAon 1c eknWtr 3a0t iVon poovlyemrveor-letlaegcter,oalyntde mohemmbicraonvee fruveol lctaelgl e(.PETMheFCN)e mrnosdte’sl ibnassteadn otann [e1o7]u iss vuosletda gine V cell the proposed system. The total voltage across the FC is the sum of the activation overvoltage, andtheirreversiblevoltageV givetheoutputvoltagefromthePEMFC,asgiveninEquation(1): irrev Nernst’s voltage, concentration overvoltage, and ohmic overvoltage. The Nernst’s instantaneous voltage Vcell and the irreversible voltagVe Virre=v gVive th−e oVutput voltage from the PEMFC, as given in (1) out cell irrev Equation (1): (cid:32) (cid:33) RV.T =V pH−VO (1) V =Vo − (cid:2925)(cid:2931)(cid:2930)ln (cid:2913)(cid:2915)(cid:2922)(cid:2922) 2 (cid:2919)(cid:2928)(cid:2928)(cid:2915)(cid:2932) −k .(T−T ) (2) cell cell 2R.F.T pp0H.5.pO e ref V(cid:2913)(cid:2915)(cid:2922)(cid:2922)=V(cid:2913)(cid:2925)(cid:2915)(cid:2922)(cid:2922)−2.Fln(cid:4678)p(cid:2868)O.(cid:2873)2.(cid:2870)pH(cid:4679)2 −k(cid:2915).(T−T(cid:2928)(cid:2915)(cid:2916)) (2) Virrev =Vact+(cid:2899)(cid:3118)Vco(cid:2892)n(cid:3118)+Vohm, (3) V =V +V +V , (3) where Vo is the open circuit voltage ((cid:2919)(cid:2928)O(cid:2928)(cid:2915)C(cid:2932)V) a(cid:2911)(cid:2913)t(cid:2930)stan(cid:2913)(cid:2925)d(cid:2924)ard(cid:2925)t(cid:2918)e(cid:2923)mperature and pressure, R is the ideal cell gas cwonhesrtae nVt(cid:2913)(cid:2925),(cid:2915)(cid:2922)T(cid:2922) iiss tthhee ospteanc kcirtceumit pveorlatatguer e(O(kC)V,)F ati sstFanadraadrda yte’smCpeornatsutaren atn(dC /prmesoslu)r,ek, eR iiss athfeu indcetailo n of gas constant, T is the stack temperature (k), F is Faraday’s Constant (C/mol), k is a function of the the entropy change, pH O, p , and p is the partial pressure of water,(cid:2915)oxygen, and hydrogen 2 O2 H2 respeecntitvroeplyy. Scihmanilgaer,l ypVH(cid:2870)O,, VpO2, aanndd pVH2 is atrhee thpearaticatli vparteiossnu,rceo nocf ewntartaetri,o nox,yagnedn,o hamndi chvyodltraoggeend rops act conc ohm oftherefsupeelctcievlell.y. Similarly Vact, Vconc and Vohm are the activation, concentration, and ohmic voltage drops of the fuel cell. The equivalent electric model of PEMFC is shown in Figure 3, where C is the equivalent The equivalent electric model of PEMFC is shown in Figure 3, where C is the equivalent capacitancebecauseofthedouble-layerchargingeffect,Vcrepresentscapacitorvoltage,R indicates capacitance because of the double-layer charging effect, Vc represents capacitor voltagacet, Ract theactivationresistance,andR istheconcentrationresistance. indicates the activation resistcaonncce, and Rconc is the concentration resistance. Figure 3. Equivalent electric model of fuel cell. Figure3.Equivalentelectricmodeloffuelcell. The hydrogen partial pressure can be computed as Thehydrogenpartialpressurecanbecomputedas (cid:2914)(cid:2926)(cid:2914)(cid:2892)(cid:2930)(cid:3118)=(cid:2902)(cid:2906)(cid:3140)(cid:3159)(cid:3118)(cid:3172).(cid:2904)(q(cid:2892)(cid:2870)(cid:2879)(cid:2919)(cid:2924)−q(cid:2892)(cid:2870)(cid:2879)(cid:2928)(cid:2915)(cid:2911)(cid:2913)−q(cid:2892)(cid:2870)(cid:2879)(cid:2925)(cid:2931)(cid:2930)), (4) where R(cid:2892)(cid:3118) represents gdaspd Hcto2ns=tanRtV Hf2o.rT h(cid:0)yqdHr2o−gienn−, Tq His2 −trheeac t−emqpHe2r−atouurte(cid:1) ,and Van is the anode’s (4) volume. Similarly q and q a nare input flow and reacted flow of the hydrogen gas in the (cid:2892)(cid:2870)(cid:2879)(cid:2919)(cid:2924) (cid:2892)(cid:2870)(cid:2879)(cid:2925)(cid:2931)(cid:2930) anode, respectively. whereR representsgasconstantforhydrogen,TisthetemperatureandV istheanode’svolume. H2 an Similarly qH2−in and qH2−out are input floqw(cid:2892)(cid:2870)(cid:2879)a(cid:2928)n(cid:2915)(cid:2911)d(cid:2913)=re(cid:2898)a(cid:2870).c(cid:2893).(cid:3138)(cid:2890)t(cid:3135)e, d flow of the hydrogen gas in th(5e) anode, respectively. where N is the total number of cells required to attain the required output voltage from the fuel cell, N.I and the fuel cell supplied current is repreqsHe2n−terdea cby= IFC2. .FFC, (5) The hydrogen output flow can be computed using the expression whereNisthetotalnumberofcellsrequiredtoattaintherequiredoutputvoltagefromthefuelcell, q =k .q , (6) andthefuelcellsuppliedcurrentisrepres(cid:2892)e(cid:2870)n(cid:2879)(cid:2925)te(cid:2931)(cid:2930)dby(cid:2925)I(cid:2931)F(cid:2930)(cid:2879)C(cid:2892).(cid:2870) (cid:2892)(cid:2870) Twhheerhey kdrogen coaunt pbue tcfloomwpuctaend buesicnogm thpeu treedlautiosinnsghitph ebeetxwpereens stihoen molar flow and its partial (cid:2925)(cid:2931)(cid:2930)(cid:2879)(cid:2892)(cid:2870) pressure of the hydrogen gas inside the channel as represented as follows: qkH(cid:2925)2(cid:2931)−(cid:2930)(cid:2879)o(cid:2892)u(cid:2870)t(cid:3493)=M(cid:2923)k(cid:2925)o(cid:2922)u(cid:2911)(cid:2928)t−=H(cid:2900)(cid:2927)2(cid:3171)(cid:3171).q(cid:3173)(cid:3173)H(cid:3170)(cid:3170)(cid:3159)(cid:3159)(cid:3176)(cid:3176)2., (7) (6) wherekouSti−mHi2lacrlayn, tbhee cooxmygpeunt peadrtuiasli npgretshsuerree lisa tgiiovnesnh aips betweenthemolarflowanditspartialpressure ofthehydrogengasinsidethechannelasrepresentedasfollows: (cid:112) q kout−H2 Mmolar = molar. (7) P molar Energies 2018,11,542 5of19 Similarly,theoxygenpartialpressureisgivenas Energies 2018, 11, x FOR PEER REdVpIEW = RO2.T(cid:0)q −q −q (cid:1) 5 of 19 (8) O2 V O2−in O2−rec O2−out cat R .T dp(cid:2899)(cid:2870)= V(cid:2899)(cid:2870)q (q(cid:2899)(cid:2870)(cid:2879)(cid:2919)(cid:2924)=−qN(cid:2899).(cid:2870)I(cid:2879)F(cid:2928)C(cid:2915)(cid:2913)−q(cid:2899)(cid:2870)(cid:2879)(cid:2925)(cid:2931)(cid:2930)) (8) (9) (cid:2913)(cid:2911)(cid:2930)O2−reac 4.F N.I qO2−qo(cid:2899)u(cid:2870)t(cid:2879)=(cid:2928)(cid:2915)(cid:2911)(cid:2913)ko=ut_4O.2F(cid:2890).(cid:2887)p O2, (9) (10) whereVcatisthevolumeofcathode,RO2qis(cid:2899)(cid:2870)t(cid:2879)h(cid:2925)e(cid:2931)(cid:2930)o=xykg(cid:2925)e(cid:2931)(cid:2930)n_(cid:2899)g(cid:2870).aps(cid:2899)c(cid:2870)o, nstant,andqO2−in,qO2−out,an(1d0q) O2−rec aretheinput,theoutput,andthereactedoxygeninthecathode,respectively. TheH-1000HorizonFC where Vcat is the volume of cathode, RO2 is the oxygen gas constant, and q(cid:2899)(cid:2870)(cid:2879)(cid:2919)(cid:2924), q(cid:2899)(cid:2870)(cid:2879)(cid:2925)(cid:2931)(cid:2930), and q(cid:2899)(cid:2870)(cid:2879)(cid:2928)(cid:2915)(cid:2913) datahavebeenusedintheproposedmodel,whichispresentedinTable1. are the input, the output, and the reacted oxygen in the cathode, respectively. The H-1000 Horizon FC data have been used in the proposed model, which is presented in Table 1. Table1.PEMFCspecifications. Table 1. PEMFC specifications. Parameters Value Parameters Value RatedPower 1000W Rated Power 1000 W RatedPerformance 28.8V@35A Rated Performance 28.8 V @ 35 A No.ofcells 48 No. of cells 48 Max.StackTemp 338K OxMygaexn. SPtraecsks uTreemp 0.23638B aKr HydOroxgyegnenP rPersessusruere 0.450–.02.65 5BaBra r Hydrogen Pressure 0.45–0.55 Bar 2.3. BatteryModel 2.3. Battery Model: Figure 4 shows the equivalent electric circuit of the lead acid battery, which represents the Figure 4 shows the equivalent electric circuit of the lead acid battery, which represents the Theveninbatterymodel[18]. Equation(11)representsthebatteryterminalvoltage: Thevenin battery model [18]. Equation (11) represents the battery terminal voltage: (cid:0) (cid:1) VBVa(cid:2886)t(cid:2911)(cid:2930)==NNs(cid:2929)(EEO(cid:2899)−−II(cid:2886)B(cid:2911)a(cid:2930)tRR(cid:2919)i−−VV(cid:2913)(cid:2926)cp), , (11) (11) wherwehEeOre =EO I=d eIdaelavl ovlotlataggee ooff tthhee bbaatttetre, r,Ri R=i I=nteIrnntael rrneaslistraenscies,t aCnPc e= ,PColPari=zatPioonla craizpaatciiotonr, cRaPp =a citor, RP=PPoollaarrizizaatitoion nrerseissitsatnacne,c eV,CVP =C PPo=laPriozlaatrioizna vtioolntagveo, lNtaSg =e ,NNuSm=beNr oufm ceblelsr coofncneelcltsedc oinn nseerciteesd, NinP =s eries, NP=NNuummbbere rofo cfecllesl lcsonconnecnteedct iend pianrapllaerla, lIl(cid:2886)e(cid:2911)l(cid:2930),=IBa(cid:2893)(cid:3144)t(cid:2898)(cid:3173)(cid:3174)(cid:3159)=(cid:3162) =ILN Bopaadtt=erBy actutrerreyntc u rrent. Allthemodelcomponentsarefunctionsofthebatterystateofcharge(SoC).Modelparameters All the model components are functions of the battery state of charge (SoC). Model parameters correcsoprorensdpionngdtinogt htoe tbhaet btearttyerayr eargei gvievnenin inT Taabblele2 2.. Figure 4. Thevenin’s model of a lead acid battery. Figure4.Thevenin’smodelofaleadacidbattery. Table 2. Battery specifications. Table2.Batteryspecifications. Parameters Value PRaraatmede tCearspacity V2a1l uAeh Nominal Voltage 24 V RatedCapacity 21Ah Min. Voltage 16 V NominalVoltage 24V Max. Charging Current limit 9.9 A Min.Voltage 16V Max.MChaaxr. gDinisgchCaurrgree nCtulirmreintt 91.095A A Max.DiscIhnairtgiael CSouCrr ent 10750%A InInteitrinaallS RoCesistance 780 m%Ω InternalResistance 8mΩ 2.4. Bidirectional DC–DC Converter Energies 2018,11,542 6of19 2.4. BidirectionalDC–DCConverter Anovelnon-isolatedDC–DCconverter(basedonacoupledinductor)withbidirectionaloperation hasbeenproposed,whichisseparatelyconnectedtothefuelcellalongwiththebatterybank. Firstly, itperformstheunidirectionaloperationandbooststhelow-levelfuelcellvoltagetoahigh-levelDClink voltage(boostmodeofoperation). Secondly,itactsasabatterycharging/dischargingunitoperating betweenthebatterybankandtheDClink(bothbuckandboostmodesofoperation). Theconverter offersthefollowingbenefits: 1. Highvoltagediversityinbothmodesofoperation,i.e.,buckandboostmodes. 2. Reducedpassivecomponentsareemployedintheproposedconverter. 3. Bidirectionaloperationisperformedusingonlythreeactiveswitches. 4. ZeroVoltageSwitching(ZVS),voltageclampingcircuit,andsynchronousrectificationareusedto minimizetheconductionandswitchinglosses. Intheproposedbidirectionalconverter,thecoupledinductorisusedwithprimaryandsecondary windings,representedbyL andL ,respectively. TheboostpumpcapacitorC provideshighvoltage P S b2 diversity, with continuous current flow and reduced current stress in the primary winding of the coupledinductor. ThevoltagestressofcapacitorC isverylowatthispointinthecircuit. b2 ThereareseverevoltageandcurrentrippleswithtwicetheoutputACfrequencyintheDCbus. Inthiscase,thecurrentrippleswillreactwiththeoutputterminaloftheFCsthroughtheDC/DC convertersothatthepowersourceswillsustainextraloads. Thelow-frequencycurrentrippleand transientloadwillcauseadecreaseinFCefficiency[19,20].However,apassivecompensationapproach hasbeenusedinwhichthecapacitorparalleltotheFCandbatterybankareselectedwithslightly largervalues,whichlimitsthecurrentandvoltageripplestolessthan10%. 2.4.1. BatteryCharging/BuckOperation Figure5showsthecharacteristicwaveformsduringbuckmode. D isthedutycycleofS and 1 3 S ,whileD isthedutycycleofswitchS . D andD arerelatedtoeachotherbytherelationship ax 3 4 1 3 D (=1−D ). L representsthecoupledinductormagnetizinginductancehavingaturnsratioof 1 3 m N=N /N ,whereN indicatesthenumberofturnsinprimarywindingandN indicatesthenumber 2 1 1 2 ofturnsforsecondarywinding. V isthevoltageacrossDClink,V isthebatteryvoltage,V and d Bat LP V aretheprimaryandsecondarywindingvoltages, andV isthevoltageacrosscapacitorC . LS cb2 b2 Figure6showstheoperationoftopologyinintervalsthroughoutthebatterychargingmode. Interval1(t ~t ): TheswitchS remainsONwhiletheswitchesS &S areturnedOFFduringthis 0 1 4 3 ax interval. Thedirectionofcurrenti isfromtheDClinktowardsthebatterybankviathecapacitorC LS b2 andthecoupledinductor’swindings. EmployingKVL,wegetEquation(12): V =V +V +V +V (12) d LS Cb2 LP Bat V =V (1+N)+V +V . (13) d LP Cb2 Bat Thecontinuousinductorcurrenti flowsthroughthediodeD towardsthebatterybank. V Lb b3 Bat representsthevoltageacrosstheinductorL . b Interval 2 (t ~t ): When interval 2 starts, switch S turns OFF and the polarities of primary and 1 2 4 secondarycoils(L &L )ofcoupledinductorarereversedbecauseoftheenergystoredintheleakage P S inductor. InthismodeofoperationSwitchS isOFF,butthesecondarycurrenti isstillflowing, 4 LS hence the body diode of the switch Sax is forward-biased to ensure that the current i keeps on LS flowing. ThismodekeepsthediodeD inforwardbias. SwitchS bodydiodeisforward-biasedwith b3 3 thereductionofthesecondarycurrenti ;however,theprimarycurrenti remainsunchanged. LS LP Energies 2018,11,542 7of19 Interval 3 (t ~t ): Both S and S turn ON following zero voltage switching (ZVS) in this mode. 2 3 3 ax ThecapacitorC beginstodischargeacrossthebatterybankthroughtheswitchS andtheinductor b2 ax L . ThedischargingcapacitorC causesthesecondarycurrenti toinduceinthereversedirection. b b2 LS The body diode D allows clamp capacitor C to discharge and adds small current i into the b2 b1 3 secondarycurrentthatfurtherflowstowardsthebattery. Byemployingthevoltagesecondbalance,V canbedeterminedasfollows: Cb2 V =V +V +V . (14) Cb2 Lb Bat LS Theprimarycurrentreleasesthestoredenergyincoupledinductorintothebatterybankthrough Energies 2018, 11, x FOR PEER REVIEW 7 of 19 switchS . Utilizingthevoltage-secondbalance,theV isgivenby 3 Lb V(cid:2887)D(cid:2912)(cid:2870)1V=LbV(cid:2896)=(cid:2912)+DV3V(cid:2886)(cid:2911)B(cid:2930)a+t.V(cid:2896)(cid:2903). (14) (15) TheVTLhPe cparnimbaeryd ecuterrrmenitn reedleaassefso ltlhoew sst:ored energy in coupled inductor into the battery bank through switch S3. Utilizing the voltage-second balance, the VLb is given by D V =D V . (16) 3D LVP =D1VBat. (15) (cid:2869) (cid:2896)(cid:2912) (cid:2871) (cid:2886)(cid:2911)(cid:2930) PuttinTgheE VqLuPa tciaonn b(e1 5d)etaenrmditnheed vaas lfuoellsowofs:V LbandVLPintoEquation(13),thevoltagegainduring thebuckoperationmodeisgivenbytheequation D V =D V . (16) (cid:2871) (cid:2896)(cid:2900) (cid:2869) (cid:2886)(cid:2911)(cid:2930) Putting Equation (G1b5u) cakn=d tVhBe avt/alVudes= of[ DV3L(b 1a−ndD V3)LP] /in[2tNo (E1q−uaDti3o)n2 (+131)], .the voltage gain during (17) the buck operation mode is given by the equation Interval4(t ~t ): BothS andS turnOFFatthebeginningofthismode. Thecurrentscorresponding 3 4 3 G ax=V ⁄V =[D (1−D )]⁄[2N(1−D )(cid:2870)+1]. (17) (cid:2912)(cid:2931)(cid:2913)(cid:2921) (cid:2886)(cid:2911)(cid:2930) (cid:2914) (cid:2871) (cid:2871) (cid:2871) totheprimaryandsecondarywindingsi andi continuetoflowowingtothecoupledinductor LP LS leakagInetienrvdaulc 4t a(tn3~cte4.):T Bhoeths Se3c oanndd aSraxy tucrunr rOeFnFt caht tahreg ebsegtihnenipnagr aofs itthicis cmapodace.i tTahnec ecucrorerrnetss pcoornrdesipnogntdoinSg and 3 to the primary and secondary windings iLP and iLS continue to flow owing to the coupled inductor S ,anddischargestheparasiticcapacitancecorrespondingtoS . WhenthevoltageacrossS equals ax leakage inductance. The secondary current charges the parasitic 4capacitance corresponding to S3a axnd V ,theS bodydiodeturnsON.Asthismodeends,theprimarycurrenti goesondecreasinguntilit d Sax, 4and discharges the parasitic capacitance corresponding to S4. When thLeP voltage across Sax equals becomesequaltothesecondarycurrenti . Vd, the S4 body diode turns ON. As thisL mS ode ends, the primary current iLP goes on decreasing until Intervita ble5co(mt e~st e)q:uSal ttou trhnes seOcoNnddauryri cnugrrtehnits iLiSn. terval under ZVS conditions. The capacitor C gets 4 5 4 b1 chargIendtebrvyalt h5e (tc4~lat5m): pSe4 dturdniso dOeND durianng dthtihs einpterrivmala uryndaenr dZVseSc coonnddaitriyoncs.u Trrheen ctsapbaecigtoinr Ctob1 ignectsr ease. b1 charged by the clamped diode Db1 and the primary and secondary currents begin to increase. The Thecircuitrepeatsfrominterval1attheendofthisinterval. circuit repeats from interval 1 at the end of this interval. Figure 5. Characteristic waveforms of a bidirectional DC–DC converter. Figure5.CharacteristicwaveformsofabidirectionalDC–DCconverter. Energies 2018,11,542 8of19 Energies 2018, 11, x FOR PEER REVIEW 8 of 19 Energies 2018, 11, x FOR PEER REVIEW 8 of 19 Figure 6. Topological stages of battery charger/discharger during buck mode of operation: (a) Mode Figure6.Topologicalstagesofbatterycharger/dischargerduringbuckmodeofoperation:(a)Mode1; Figure 6. Topological stages of battery charger/discharger during buck mode of operation: (a) Mode 1; (b) Mode 2; (c) Mode 3; (d) Mode 4; (e) Mode 5. (b)Mode2;(c)Mode3;(d)Mode4;(e)Mode5. 1; (b) Mode 2; (c) Mode 3; (d) Mode 4; (e) Mode 5. 2.4.2. Battery Discharging/Boost Operation 2.4.2. BatteryDischarging/BoostOperation 2.4.2. Battery Discharging/Boost Operation Figure 7 shows the bidirectional converter operational waveform in the battery discharging Figure 7 shows the bidirectional converter operational waveform in the battery discharging Figure 7 shows the bidirectional converter operational waveform in the battery discharging mode of operation. The circuits for both battery discharging and the fuel cell operation are identical. modeofoperation. Thecircuitsforbothbatterydischargingandthefuelcelloperationareidentical. mode of operation. The circuits for both battery discharging and the fuel cell operation are identical. The switch Sax remains OFF during boost operation. The bidirectional converter boosts the low level TheswitchS remainsOFFduringboostoperation. Thebidirectionalconverterbooststhelowlevel Tbhaet tsewryit cbha nSkaax x vroemltaagine st oO aF Fh idguhreirn lge vbeolo DstC o plinerka tvioolnta. gTeh. eS bimidiilraerclyti,o tnhael lcoown vveorlttearg eb ooof sftus etlh cee llol wis sletevpe l batterybankvoltagetoahigherlevelDClinkvoltage. Similarly,thelowvoltageoffuelcellisstepup buatpte troy hbiagnhk DvCol tlaingke tvoo lat ahgieg hbeyr ulenviedli rDecCti olinnakl voopletaragtei.o Sni mofi ltahrely c, othnve elrotwer .v Tohltea gbea totfe rfyu edl icsechlla irsg sintegp tohighDClinkvoltagebyunidirectionaloperationoftheconverter. Thebatterydischargingoperation uopp teor ahtiiognh dDuCri nlign vka vrioolutasg ien tberyv aulns iidsi dreecptiicotneadl ionp Feirgautrioe n8 . of the converter. The battery discharging duringvariousintervalsisdepictedinFigure8. operation during various intervals is depicted in Figure 8. Figure 7. Characteristic waveforms during boost mode. FFiigguurree 77.. CChhaarraacctteerriissttiicc wwaavveeffoorrmmss dduurriinngg bboooosstt mmooddee.. Energies 2018,11,542 9of19 Energies 2018, 11, x FOR PEER REVIEW 9 of 19 Figure 8. topological stages during boost mode: (a) Mode 1; (b) Mode 2; (c) Mode 3; (d) Mode 4; (e) Figure8. Topologicalstagesduringboostmode: (a)Mode1; (b)Mode2; (c)Mode3; (d)Mode4; Mode 5; (f) Mode 6. (e)Mode5;(f)Mode6. Interval 1 (t0~t1): In interval 1, S3 is ON, and S4 remains OFF. Fuel cell/battery bank voltage is pInrotevrivdaeld1 to(t th~et s)i:dIen oifn ttheer vbaildi1r,ecStioinsaOl Nco,navnedrteSr wreitmh aloinws vOoFlFta.gFeu. eBlecfoelrle/ ibnattetrevrayl b1a, nthke vcoalptaagcietoirs 0 1 3 4 Cprb2o vreidmeadintso cthhaersgiedde aonfdth tehbe icdoiurepclteiodn ianldcuocntovre rmteargwneitthizlionwg cvuorlrteangte i.LBM eifnocrreeainsetesr ivna al 1li,ntheaerc mapaancniteorr, aCs derpemictaeidns inch Fairgguerde a7n. dthecoupledinductormagnetizingcurrenti increasesinalinearmanner, b2 LM asdeBpyic utetidliizninFgi gKuVreL7, .we can determine ByutilizingKVL,wecandetermineV =V =V ⁄N. (18) (cid:2886)(cid:2911)(cid:2930) (cid:2896)(cid:2926) (cid:2896)(cid:2903) Using voltage second balance, thVe vo=ltaVge a=croVss /pNri.mary winding VLP can be derived( 1a8s) Bat Lp LS follows: Usingvoltagesecondbalance,thevoltaVgeDacr=osVsprDim.a rywindingVLPcanbederivedasfol(l1o9w) s: (cid:2896)(cid:2900) (cid:2871) (cid:2886)(cid:2911)(cid:2930) (cid:2869) Interval 2 (t1~t2): In interval 2, S3 turns OVFF. DS3 p=arVasitiDc c.apacitance is charged by primary curr(e1n9t) LP 3 Bat 1 iLP, while S4 parasitic capacitance is discharged by secondary current iLS. This interval ends when the voltage across S3 and the capacitor voltage VCb1 become equal. Interval2(t ~t ): Ininterval2,S turnsOFF.S parasiticcapacitanceischargedbyprimarycurrent 1 2 3 3 Interval 3 (t2~t3): S3 is turned OFF in this interval. The primary current iLP decreases, while the i ,whileS parasiticcapacitanceisdischargedbysecondarycurrenti . Thisintervalendswhenthe LP 4 LS secondary current iLS is enhanced due to the coupled inductor leakage inductance. Consequently, the voltageacrossS andthecapacitorvoltageV becomeequal. 3 Cb1 S4 body diode turns ON. Since the S3 voltage becomes higher than that across the capacitor Cb1, the cIanptearcvitaolr3 C(bt12 ~get3t)s: cSh3arigsetdu rvniead dOioFdFe Dinb1t.h Tisheinreteforvrea,l .thTeh veolptarigme asrtyrecsus rarcernotssiL tPhed escwreitacshe sis, wkehpitl elotwhe. Tsehceo cnadpaarcyitcour rvroenlttagiLeS VisC1e insh gainvecend byd uetothecoupledinductorleakageinductance. Consequently, theS bodydiodeturnsON.SincetheS voltagebecomeshigherthanthatacrossthecapacitorC , 4 3 V =V +V . (20b) 1 thecapacitorC getschargedviadiodeD(cid:2887)(cid:2869). The(cid:2886)r(cid:2911)e(cid:2930)fore(cid:2896),(cid:2900)thevoltagestressacrosstheswitchiskept b1 b1 low.UThsiencga Epqacuiatotirovno (l1t8a)g,e V isgivenby C1 V = V ⁄D . (21) V (cid:2887)(cid:2869)=V (cid:2886)(cid:2911)+(cid:2930) V(cid:2871) . (20) C1 Bat LP Interval 4 (t3~t4): In this interval, S4 turns ON under the condition of zero voltage switching (ZVS). Both Uthsein cgouEpquleadt ioinnd(u1c8t)o,r windings LP and LS, and the boost pump capacitor Cb2 are in series and provide energy to the DC link. The iLS beginVsC t1o= inVcrBeaat/seD u3.ntil it approaches iLP, after which it follo(w21s) the iLP till the interval 4 ends. Hence, the energy stored in both the coupled inductor windings Interval4(t ~t ): Inthisinterval,S turnsONundertheconditionofzerovoltageswitching(ZVS). discharges a3cro4ss the DC link. Both4 Db1 and Db2 are reverse-biased in this interval, as depicted in BoththecoupledinductorwindingsL andL ,andtheboostpumpcapacitorC areinseriesand Figure 8d. Applying voltage second balPance, wSe obtain Equation (22): b2 provideenergytotheDClink. Thei beginstoincreaseuntilitapproachesi ,afterwhichitfollows LS LP the i till the interval 4 ends. Hen cVe(cid:2914),=thVe(cid:2886)(cid:2911)e(cid:2930)n+erVg(cid:2896)y(cid:2903)s+toVr(cid:2887)e(cid:2870)d+inV(cid:2896)b(cid:2926)o th the coupled inductor wind(2i2n)g s LP V =V +V +(N+1)V . (23) (cid:2914) (cid:2886)(cid:2911)(cid:2930) (cid:2887)(cid:2870) (cid:2896)(cid:2900) Interval 5 (t4~t5): S4 turns OFF during this interval. The current iLS charges the S4 parasitic capacitance. Cb1 begins to discharge across Cb2 via the diode Db2. Energies 2018,11,542 10of19 dischargesacrosstheDClink. BothDb1andDb2arereverse-biasedinthisinterval,asdepictedin Figure8d. Applyingvoltagesecondbalance,weobtainEquation(22): V =V +V +V +V (22) d Bat LS C2 Lp V =V +V +(N+1)V . (23) d Bat C2 LP Interval5(t ~t ):S turnsOFFduringthisinterval.Thecurrenti chargestheS parasiticcapacitance. 4 5 4 LS 4 C beginstodischargeacrossC viathediodeD . b1 b2 b2 V =V =V /D (24) Cb2 Cb1 Bat 3 ByputtingEquations(19)and(24)intoEquation(23),thevoltagegainofthecircuitis V =V +V /D +(N+1)D /D V (25) d Bat Bat 3 1 3 Bat G =V /V = (2+ND )/(1−D ). (26) boost d Bat 1 1 TheS bodydiodeisforward-biasedduetothepolaritiesofC andinductorL . 3 b2 P Interval6(t ~t ): Ininterval6,S turnsONfollowingZVSconditions. Hencetheswitchinglossesare 5 6 3 reducedandtheefficiencyofthesystemisconsiderablyimproved. Thenextswitchingcyclestarts whenthevoltageacrosscapacitorsC andC becomesequivalent. b1 b2 AturnratioofN=2satisfiestheoperationofunidirectionalconverterwhenthefuelcellsare connected,andN=4forbidirectionalconversionbetweenthedesiredDClinkandthebatterybank. Table 3 shows a comparison of proposed bidirectional converter with other state-of-the-art works. Theproposedconvertershowsahighconversionratioascomparedto[20,21]. Also,thenumberof switchesisreducedascomparedtootherconverters. In[21]theauthorshaveshownhighvoltage diversity;however,fiveswitchesareusedinthecircuit,whichincreasesthesizeandcostofthesystem. Table3.Comparisonofproposedbidirectionalconverter. Features [19] [22] [21] [20] ProposedTopology Switches 4 5 4 4 3 AuxiliaryCapacitors 2 3 2 2 2 Coupled-Inductor 1 1 1 0 1 AuxiliaryInductor 1 0 0 1 1 MBOOST N 1+N +N 2+N 2 2+ND 1−D (1−D) D 1−D 1−D MBUCK D D D D D(1−D) N 1+N+DN N+2 2 2N(1−D)2+1 Efficiency 97% 96% 95% 94% 96% Size Large Large Medium Medium Small EstimatedCost(USD) ~130 ~172 ~118 ~136 ~116 3. ControlStrategy Thecontrolschemefordifferentpartsoftheline-interactiveUPSsystemisshowninFigure9. The inverter operates only during the fuel cell/battery-powered mode. However, the battery charger/dischargerswitchesdependonthemodechange. Ingridmode,thebidirectionalconverter follows the battery discharger control, while in fuel cell/battery-powered mode it follows battery charging control, as shown in Figure 9. Similarly, thecontrolschemefortheunidirectionalDC–DC converterregulatestheinverterDClinkvoltageduringthefuelcell/battery-poweredmodeofoperation.

Description:
Abstract: This paper presents line-interactive transformerless Uninterruptible Power Supply (UPS) with a fuel cell as the prime energy source. The proposed UPS consists of three major parts (i.e., an output inverter, a unidirectional DC–DC converter, and a battery charger/discharger). Non-isolate
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.