ebook img

LIMITS PART 1 of 1 PDF

18 Pages·2016·0.36 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview LIMITS PART 1 of 1

fo/u fopkjr Hkh# tu] ugha vkjEHks dke] foifr ns[k NksM+s rqjar e/;e eu dj ';keA iq#"k flag ladYi dj] lgrs foifr vusd] ^cuk^ u NksM+s /;s; dks] j?kqcj jk[ks VsdAA jfpr% ekuo /keZ iz.ksrk ln~xq# Jh j.kNksM+nklth egkjkt STUDY PACKAGE Subject : Mathematics Topic : LIMITS Available Online : www.MathsBySuhag.com R Index 1. Theory 2. Short Revision 3. Exercise (Ex. 1 + 5 = 6) 4. Assertion & Reason 5. Que. from Compt. Exams 6. 39 Yrs. Que. from IIT-JEE(Advanced) 7. 15 Yrs. Que. from AIEEE (JEE Main) Student’s Name :______________________ Class :______________________ Roll No. :______________________ Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal  : 0 903 903 7779, 98930 58881, WhatsApp 9009 260 559 www.TekoClasses.com www.MathsBySuhag.com Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com Limit 1. Limit of a function f(x) is said to exist as, x  a when, m 8 o Lhim0it f (a  h) = Lhim0it f (a + h) = some finite value M. f 1 o c (Left hand limit) (Right hand limit) . 2 g Note that we are not interested in knowing about what happens at x = a. Also note that if L.H.L. &e ha R.H.L. are both tending towards '  ' or ‘–’ then it is said to be infinite limit. pag ySuSolved RExeammepmlbee #r, 1Lximait x  a . B 1 8 s 8 h 8 5 at 0 M 3 Limit 9 . Find f(x) 8 w x/2 9 w 0 w , Solution. 9 & 7 m Here Limit f(x) = 1 77 x/2 3 oSolved Example # 2 0 c 9 . 3 s 0 e 9 s 0 s a e : l n C Find Limit f(x) o o x1 h P k e al T p .Solution. o w h w Left handed limit = 1 Right handed limit = 2 B wSolved HEexnacmeplLexim #1i t3 f(x) = does not exist. Sir), : . e limit limit limit K it (i) Find x0 f(x) (ii) Find x1 f(x) (iii) Find x3 f(x) R. s b S. e ( w a y m ri a o K fr R. e g g a a h u k S c a s : P h Solution. t a y limit M d (i) f(x) = does not exists u bxec0ause left handed limit  right handed limit s, t e S limit limit s (ii) f(x) = 0 (iii) f(x) = 1 s d x1 x3 a a2. Indeterminant Forms: Cl o o nl 0 ,  , 0 , º, 0º,and 1. ek w 0  T o Solved Example # 4 D Which of the following limits are forming indeterminant from also indicate the form E 1 1x E (i) lim (ii) lim R x0 x x0 1x2 F 1 1  (iii) lim x n x (iv) lim    x0 x0 x x2  Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't. Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com lim lim (v) (sin x)x (vi) (n x)x x0 x0 1 (vii) lim 1sinxx (viii) lim (1)1/x x0 x0 Solution 0 (i) No (ii) Yes from m 0 8 1 o (iii) Yes 0 ×  form (iv) Yes ( – ) form f c (v) Yes, (0)º form (vi) Yes ()º form o . (vii) Yes (1) form (viii) 3 g e a NOTE : g h (i) '0' doesn't means exact zero but represent a value approaching towards zero similary to '1' anda BySu ((iiiii)) i nf i+ nx i ty. = =   1. p (iv) (a/) = 0 if a is finite 8 s 8 h a 58 at (v) 0 is not defined for any a  R. 0 M 3 (vi) a b = 0, if & only if a = 0 or b = 0 and a & b are finite. 9 . 8 w 3. Method of Removing Indeterminancy 9 w 0 w To evaluate a limit, we must always put the value where 'x' is approaching to in the function. If we get9, & a determinate form, then that value becomes the limit oth er wise if an indeterminant form comes. Then7 m apply one of the following methods: 77 (i) Factorisation (ii) Rationalisation or double rationalisation 3 o (iii) Substitution (iv) Using standard limits 0 c 9 . (v) Expansions of functions. 3 s 0 e1. Factorization method :- 9 s We can cancel out the factors which are leading to indeterminancy and find the limit of the remaing0 s a expression. e : l n C Solved Example # 5 o o h Tek lxim2it xx63224xx1126 pal P .Solution. o w h w x6 24x16 (x2)(x5 2x4 4x3 8x2 16x8) B limit = limit , w x2 x3 2x12 x2 (x2 2x6)(x2) r) 168 Si e: = = 12 K. t 14 . i R s b2. Rationalization /Double Rationalization. S. e ( w We can rationalize the irrational expression by multiplying with their conjugates to remove thea m indeterminancy. riy a o K 4 5x1 frSolved Example # 6 limit . R. e x1 2 3x1 g g a aSolution. limit 4 5x1 uh k x1 2 3x1 S c a (4 5x1)(2 3x1)(4 5x1) s : P limit h = t x1 (2 3x1)(4 5x1)(2 3x1) a y M d u limit (155x) 2 3x1 5 s, St = x1 (33x) × 4 5x1 = 6 se s dSolved Example # 7 a a Cl nlo Evaluate : (i) xlim2 x12 x32(23xx23)2x (ii) xlim0 1x x 1x eko w   T (2x3) x 1 o (iii) lim D x1 2x2 x3 Solution (i) We have E E  1 2(2x3)   1 2(2x3)  R xlim2 x2 x3 3x2 2x = xlim2 x2 x(x1)(x2) F x(x1)2(2x3) lim =   x2  x(x1)(x2)  Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't. Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com  x2 5x6  = lim   x2 x(x1)(x2) (x2)(x3)  x3  1 lim lim =   =   = – x2 x(x1)(x2) x2 x(x1) 2 0 (ii) The given limit taken the form when x  0. Rationalising the numerator, we get 0 m 8 .co xlim0 1x x 1x = xlim0  1x x 1x  11xx  11xx 4 of 1 g e a  (1x)(1x)  g h = lim    pa ySu x0 x 1x2x 1x   2  2 . B = lim    = lim   = = 1 81 s x0 x 1x  1x  x0  1x  1x 2 8 h (iii) We have 8 5 at (2x3) x 1 (2x3) x 1 0 .M xlim1  2x2 x3  = xlim1  (2x3)(x1)  893 w   9 w  (2x3) x 1  0 w = lim     x1 (2x3) x 1 x 1 9, & 7 m = lim  2x3  = 1 = 1 77 o x1 (2x3) x 1 (5)(2) 10 03 c 9 s.4. Fundamental Theorems on Limits: 3 0 e 9 s LetLimit f (x) = &Limit g (x) = m. If & m exists then: 0 s xa xa a Limit Limit e : l (i) { f (x) ± g (x) } = ± m (ii) { f(x). g(x) } = . m n C xa xa o o f (x)  h k (iii) Limit = , provided m  0 P e xa g(x) m al T p . (iv) Limit k f(x) = kLimit f(x) ; where k is a constant. o w xa xa h w   B w (v) Limit f [g(x)] = f Limitg(x) = f (m); provided f is continuous at g (x) = m. r), xa  xa  Si : Solved Example # 8 Evaluate . e K sit (i) lim (x + 2) (ii) lim x(x – 1) (iii) lim x2 4 (iv) lim cos (sin x) R. b x2 x2 x2 x2 x0 S. we (v) lim x2 3x2 (vi) lim x2 3x2 a ( m x1 x2 1 x1 x2 1 riy lim a oSolution (i) x + 2 being a polynomial in x, its limit as x  2 is given by x2 (x + 2) = 2 + 2 = 4 K fr (ii) Again x(x – 1) being a polynomial in x, its limit as x  2 is given by R. e lim g x(x – 1) = 2 (2 – 1) = 2 g x2 a a h x2 4 (2)2 4 u k (iii) By (II) above, we have lim = = 2 S ac x2 x2 22 s : P (iv) lim cos (sin x) = cos limsinx = cos 0 = 1 th y x0 x0  Ma d (v) Note that for x = 1 both the numerator and the denominator of the given fraction vanish. Therefore tu lim x2 3x2 lim (x1)(x2) lim x2 1 es, S by (III) above, we have = = = – s x1 x2 1 x1 (x1)(x1) x1 x1 2 s d (vi) Note that for x = 1, the numerator of the given expression is a non-zero constant 6 and thea a Cl o 6 o l denominator is zero. Therefore, the given limit is of the form . Hence, by (IV) above, wek n 0 e w T x2 3x2 o conclude that lim does not exist D x1 x2 1 E 5. Standard Limits: Limit sinx Limit tanx Limit tan1x Limit sin1x (a) = 1 = = = E x0 x x0 x x0 x x0 x R [ Where x is measured in radians ] F x  1 (b) Limit (1 + x)1/x = e ; Limit 1  = e x0 x  x Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't. Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com Limit ex 1 Limit ax 1 (c) = 1; = log a, a > 0 x0 x x0 x e n(1x) xn an Limit Limit (d) = 1 (e) = nan – 1. x0 x xa xa sin2x Limit Solved Example # 9: Find x0 x m sin2x sin2x 8 Solution. Limit  Limit . 2 = 2 1 o x0 x x0 2x f o g.cSolved Example # 10:Limit e3x 1 e 5 a x0 x/2 g h a BySuSolution. Lxim0it ex3Lxi/m2i1t tanxsinLxxim0it 2 × 3 e33xx1 = – 6. 1. p Solved Example # 11 8 s x0 x3 8 h 8 tanxsinx 5 MatSolution. Lxim0it x3 30 9 w. = Limit tanx(1cosx) 98 w x0 x3 0 w  x 2 om & = Lxim0it tanx.x23sin2 2x = Lxim0it tanxx . sin2x2 = 1. 03 7779, c sin2x 9 .Solved Example # 12 Compute lim 3 s x0 sin3x 0 e 9 s sin2x sin2x 2x 3x  0 asSolution We have xlim0 sin3x = xlim0  2x .3x . sin3x e : l n C  sin2x 2  3x  o o =  lim  . .  lim , x  0 h k 2x0 2x  3 3x0 sin2x P w.Te = 1 . 32 + 3lxim0 si3nx3x = 32 × 1 = 32 hopal w x B wSolved Example # 13 Evaluate lim 1 2 r), x  x Si site:Solution xlim 1 2xx = exlim2x.x = e2. R. K. eb lim ex e3 lim x(ex 1) (S. Solved Example # 14 Compute (i) (ii) w x3 x3 x0 1cosx a y m Solution (i) Put y = x – 3. So, as x  3, y  0. Thus ri a o ex e3 e3y e3 K e fr xlim3 x3 = ylim0 y g R. g e3 .ey e3 a a = lim h y0 y u k S ac lim ey 1 s : P = e3 y0 y = e3 . 1 = e3 th a y (ii) We have M d u lim x(ex 1) lim x(ex 1) s, t (ii) = e S x0 1cosx x0 x s 2sin2 s d 2 a a Cl   o ex 1 x2  o nl 1 lim  .  ek w = 2 . x0  x sin2 x = 2. T o  2 D x3 8 lim ESolved Example # 15 Evaluate x2 x2 4 E Solution (First Method) R The given expression is of the form F x3 (2)3 x3 (2)3 x2 (2)2 =  x2 (2)2 x2 x2 Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't. Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com x3 8 x3 (2)3 x2 (2)2 lim lim lim  =  x2 x2 4 x2 x2 x2 x2 xn an lim = 3(22)  2(21) (using = nan–1 ) xa xa = 12  4 = 3 (Second Method) The numerator and denominator have a common factor (x – 2). Cancelling this factor, we obtain m 8 x3 8 x2 2x4 x3 8 x2 2x4 1 o =  lim = lim f c x2 4 x2 x2 x2 4 x2 x2 o g. (2)2 2(2)4 12 e 6 a = = = 3 g h 22 4 a Note : Since x  2, x – 2 is not zero, so the cancellation of the factor x – 2 in the above example isp ySu6. cUasrreie do ofu t.Subsitution in Solving Limit Problems . B 1 lim 8 s Sometimes in solving limit problem we convert f(x) by subtituting x = a + h or x = a – h as8 h xa 8 at hlim0 f(a + h) or hlim0 f(a – h) according as need of the problem. 0 5 M 3 9 w. limit 1tanx 8 Solved Example # 16 9 w x/4 1 2sinx 0 w   Solution. Put x = + h  x   h  0 9, & 4 4 7 m   77 1tan h o 4  03 s.c lhim0it 1 2sin h 3 9 e 4  90 s 1tanh 0 s 1 a limit 1tanh e : = = l n C h0 1sinhcosh o o 2tanh Ph k e 1tanh al w.T = lhim0it 2sin2 h 2sinhcosh hop w 2 2 2 B w = lhim0it 2sin2 h22stainnhhcosh (1t1anh) Sir), e: 2 2 2 K. t . i tanh R s 2 b h 1 2 S. limit we = h0 sinh (1tanh) = 1 = 2. a ( m h2 sinh2cosh2 ariy o K 2 fr7. Limit When x  R. e g g 1 a a Since x     0 hence in this type of problem we express most of the part of expressionh x u k S c 1 1 a in terms of and apply  0. We can see this approch in the given solve examples. s : P x x h t 1 a ySolved Example # 17 limit x sin M d x x u s, t limit 1 e SSolution. x sin s x x s d a a limit sin1/x Cl = = 1 o x 1/x o l k n limit x2 e wSolved Example # 18 T x 2x3 o D x2 limit Solution. E x 2x3 E 12/x 1 limit R = . x 23/x 2 F x2 4x5 limit Solved Example # 19 x 3x2 x3 2 Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't. Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com x2 4x5 limit Solution. x 3x2 x3 2 1 4 5   x x2 x3 limit = 3 2 = 0 x 1 x x3 mSolved Example # 20 lim 3x2 2 18 o x x2 of c g.Solution. lim 3x2 2 e 7 a x x2 g h a BySu Put x = t132t2. 1 x  – t  0+ 81. p s t2 8 h lim 8 at = x0 12t 0 5 M t 3 9 w. lim 32t2 t 3 98 w = x0 (12t) |t| = 1 = – 3 . 0 w8. Limits Using Expansion , 9 & 7 m (i) ax1 xlna  x2ln2a  x3ln3a .........a0 (ii) ex 1x  x2  x3 ...... 77 1! 2! 3! 1! 2! 3! 3 o 0 c x2 x3 x4 x3 x5 x7 9 . (iii) ln (1+x) =x   .........for1x1 (iv) sinxx   ..... 3 s 2 3 4 3! 5! 7! 0 sse (v) cosx1 x2  x4  x6 ..... (vi) tan x = x x3  2x5 ...... 0 9 a 2! 4! 6! 3 15 e : Cl x3 x5 x7 12 12.32 12.32.52 n (vii) tan-1x = x   .... (viii) sin-1x = x x3  x5 x7..... o o 3 5 7 3! 5! 7! h P k e x2 5x4 61x6 al T (ix) sec-1x =1   ...... p . 2! 4! 6! o w h w n(n1) n(n1)(n2) B w (x) for |x| < 1, n  R (1 + x)n = 1 + nx + 1.2 x2 + 1.2.3 x3 + ............ ), r te: Solved Example # 21 xlim0 ex x12x . K. Si i R bsSolution. lim ex 1x S. e x0 x2 ( w a  x2  y m 1x 2!.......1x 1 ari o = lim   = K fr x0 x2 2 R. e lim tanxsinx g gSolved Example # 22 a a x0 x3 h u k tanxsinx S lim cSolution. a x0 x3 s : P h  x3   x3  t dy = lim x 3 ........x 3!....... = 1 + 1 = 1. Ma u x0 3 6 2 s, t x3 e S s d Solved Example # 23 lim 7x)1/3 2 as a x0 x1 Cl wnloSolution. Put x  1 + h hlim0 (8h)h1/3 2 Teko o  h1/3 D 2.1  2 E hlim0  8 h E R  11 h2    1   F  1 h 33 8  21 .  .......1  3 8 1.2  = lim   h0 h Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't. Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com 1 1 lim = 2 × = h0 24 12 x2 n(1x)sinx Solved Example # 24 lim 2 x0 xtanxsinx x2 n(1x)sinx m lim 2 8 x0 xtanxsinx 1 o f o c  x2 x3   x3 x5  x2 g. x 2  3 .....x 3!  5! ..... 2 e 8 a lim     1 1 1 g ySuh9. =L ixmi0t s of formx 3.taxnx.sixnx = 3 + 6 = 2 . pa B 1 0 8 s All these forms can be convered into form in the following ways 8 h 0 8 5 at (i) If x  1, y  , then z = (x)y 0 M nx 3 9 w.  n z = y n x  n z = (1/y) 8 9 w 1 0 w Since y   hence  0 and x  1 hence nx  0 y 9, & (ii) If x  0, y  0, then z = xy  n z = y n x 7 7 m y 0 7 o  n z = 1/ny = 0 form 03 c 9 . (iii) If x   , y  0, then z = xy  n z = y n x 3 s e  n z = y = 0 form 90 s 1/nx 0 0 s a also for (1) type of problems we can use following rules. e : Cl (i) lim (1 + x)1/x = e (ii) lim [f(x)]g(x) n x0 xa o o where f(x)  1 ; g(x) as x  a h P k .Te = xlima 1f(x)1f(x1)1{f(x)1}.g(x) = exlima[f(x)1]g(x) opal w 4x2 h w  2x2 1 B lim   Solved Example # 25 , wSolution. Since it is in the xform o2fx 123 Sir) : . bsite xlim 22xx22314x2 = exlim 2x2 2x122x32 3 (4x2 + 2) = e–8 S. R. K e ( w lim a m Solved Example # 26:x4 (tan x)tan 2x ariy o lim (tanx1)tan2x K frSolution = ex4 R. e 2tanx g g lim(tanx1) a a = ex4 1tan2x uh k S ac = e21(1tantan/4/4) = e–1 = 1 s : P e h dy Solved Example # 27 Evaluate lim 2atan2ax . Mat u xa  x s, t e S x s ad Solution. xlima 2axtan2a Clas o o wnl put x = a + h  lim 1 h tan22ah Tek o h0  (ah) D h E  lim 1 h cot2a  ehlim0cot2ah.1ahh1 E h0  ah R  h  2a F   lim 2a .  h0 tanh ah  e  2a = e–2/ Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't. Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com lim Solved Example # 28: xx x0 lim Solution. y = xx x0 lim n y = x n x x0 1 n 1 m = lim – x = 0   y = 1 8 o x0 1 x f 1 o c x g.10. Sandwich Theorem or Squeeze Play Theorem: e 9 a g h If f(x)  g(x)  h(x)  x & Limit f(x) = =Limit h(x) thenLimit g(x) = . a xa xa xa p ySu . B 1 8 s 8 h 8 5 at 0 M 3 9 . 8 w 9 w 0 wSolved Example # 29: Evaluate lim [x][2x][3x]....[nx] 9, & n n2 7 m Where [ ] denotes the greatest integer function. 77 Solution. 3 o We know that, x – 1 < |x|  x 0 c  2x – 1 < [2x]  2x 9 . 3 s  3x – 1 < [3x]  3x 0 e .................... 9 s .................... 0 s a  n(xx +– 21x < + [ n3xx] + .n..x. + nx) – n < [x] + [2x] + ..... +[nx]  (x + 2x + .... + nx) e : l n C o  xn(n1) – n < n [r x]  x.n(n1) Pho k 2 2 e r1 al T p w. Thus, lim [x][2x]....[nx] ho w n n2 B w x  1 1 [x][2x]....[nx] x  1 ),  nlim 2 1n – n < nlim n2  nlim 2 1n Sir : . e x [x][2x]....[nx] x [x][2x]....[nx] x K t  < lim   lim = . si 2 n n2 2 n n2 2 R bAliter We know that [x] = x – {x} S. e n ( m w r x = [x] + [2x] + .... + nx – [nx] riya r1 a o = (x + 2x + 3x + ... + nx) – ({x} + {2x} + .... + {nx}) K fr xn(n1) R. e = 2 – ({x} + {2x} + .. + {nx}) g g a a n h k  1 [r x] = x 1 1 – {x}{2x}....{nx} Su ac n2 r1 2  n n2 s : P n h [r x] at y Since, 0  {rx} < 1,  0  < n M d r1 u n n n s, d St  lim r1[rx] = 0  lim r1[rx] = lim x 1 1 – lim r1{rx} asse a n n2 n n2 n 2  n n n2 Cl o o l n k n [rx] e w lim x T o n r1 = 2 D n2 E limit 1 Solved Example # 30 x sin E x0 x R 1 limit FSolution. x sin x0 x = 0 × (some value in [– 1, 1]) = 0 Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't. Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com 11. Some Important Notes : nx x lim lim (i) = 0 (ii) = 0 x x x ex As x  , n x increnes much slower than any (+ve) power of x where ex increases much faster than (+ve) power of x (iii) Limit (1  h)n = 0 & Limit (1 + h)n  where h > 0. n n 8 m (iv) If Limit f(x) = A > 0 & Limit (x) = B (a finite quantity) then; 1 o xa xa of c Limit [f(x)](x) = ez where z =Limit (x). ln[f(x)] = eBlnA = AAB 0 . xa xa 1 g e a g h x1000 a uSolved Example # 31 lim p BySSolution. lim x10x00 = 0ex 1. s x ex 8 8 h 8 __________________________________________________________________________________________ t 5 a Short Revesion (LIMIT) 0 M 3 w.THINGS TO REMEMBER : 89 1. Limit of a function f(x) is said to exist as, xa when 9 w 0 w Lximait f(x) = Lximait f(x) = finite quantity.. 9, &2. FUNDAMENTAL THEOREMS ON LIMITS : 7 7 m Let Limit f (x) = l & Limit g (x) = m. If l & m exists then : 7 o(i) Limitx f (ax) ± g (x) = l ±x ma (ii) Limit f(x). g(x) = l. m 03 c xa xa 9 . f(x)  es(iii) Lximait g(g)  m , provided m  0 903 s s(iv) Limit k f(x) = kLimit f(x) ; where k is a constant. 0 a xa xa : e l C   n (v) Limit f [g(x)] = fLimit g(x) = f (m) ; provided f is continuous at g (x) = m. o o xa  xa  h k P w.Te For example Lximait l n (f(x) = l nLximait f(x) l n l (l > 0). REMEMBER opal Limit h w B  x  a w xa ), r Si : 3. STANDARD LIMITS : e sinx tanx tan1x sin1x K. bsit(a) [L xWim0hiterex x is = m 1e a=s uLrxeimd0i itn raxdia n=sL ]xim0it x =Lxim0it x S. R. e w  1x Limit a ( (b) Limit (1 + x)1/x = e = Limit 1  note however there h0 (1 - h )n = 0 y m x0 x  x n ri a o Limit K fr and hn0 (1 + h )n  R. e(c) If Limit f(x) = 1 and Limit (x) = , then ; g g xa xa a a Limit h k Limit f(x)(x)e xa (x)[f(x)1] Su c xa a(d) If Limit f(x) = A > 0 & Limit (x) = B (a finite quantity) then ; s : P xa xa h dy Lximait [f(x)](x) = ez where z = Lximait (x). ln[f(x)] = eBlnA = AAB Mat u Limit ax 1 Limit ex1 s, St(e) x0 x = 1n a (a > 0). In particular x0 x = 1 se ad (f) Lximait xxnaan nan1 Clas o o nl4. SQUEEZE PLAY THEOREM :If f(x)  g(x)  h(x)  x & Limit f(x) = l = Limit h(x) then Limit g(x) = l.k w xa xa xa e 0  T o5. INDETERMINANT FORMS : , , 0x , 0,  ,  and 1 D 0  Note : (i) We cannot plot  on the paper. Infinity () is a symbol & not a number. It does not E obey the laws of elementry algebra. (ii)  +  =  (iii)  ×  =  E a R (iv) (a/) = 0 if a is finite (v) is not defined , if a  0. 0 F (vi) a b = 0 , if & only if a = 0 or b = 0 and a & b are finite. 6. The following strategies should be born in mind for evaluating the limits: (a) Factorisation (b) Rationalisation or double rationalisation (c) Use of trigonometric transformation ; Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

Description:
Index. 1. Theory. 2. Short Revision. 3. Exercise (Ex. 1 + 5 = 6). 4. Assertion & Reason. 5. Que. from Compt. Exams. 6. 39 Yrs. Que. from IIT-JEE(Advanced). 7. 15 Yrs. Que. from AIEEE (JEE Main). Subject : Mathematics. Topic : LIMITS. Available Online : www.MathsBySuhag.com. Student's Name :
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.