ebook img

Limitations to the determination of a Laguerre-Gauss spectrum via projective, phase-flattening measurement PDF

0.78 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Limitations to the determination of a Laguerre-Gauss spectrum via projective, phase-flattening measurement

Limitations to the determination of a Laguerre-Gauss spectrum via projective, phase-flattening measurement HammamQassim,1FilippoM.Miatto,1JuanP.Torres,2MilesJ.Padgett,3EbrahimKarimi,1,∗andRobertW.Boyd1,3,4 1DepartmentofPhysics,UniversityofOttawa,150LouisPasteur,Ottawa,Ontario,K1N6N5Canada 2ICFO-InstitutdeCienciesFotoniques,08860Castelldefels(Barcelona),Spain 3SchoolofPhysicsandAstronomy,SUPA,UniversityofGlasgow,GlasgowG128QQ,UnitedKingdom 4InstituteofOptics,UniversityofRochester,Rochester,NewYork,14627,USA ∗Correspondingauthor:[email protected] CompiledApril23,2014 4 1 Oneofthemostwidelyusedtechniquesformeasuringtheorbitalangularmomentumcomponentsofalightbeamistoflatten 0 thespiralphasefrontofamode,inordertocoupleittoasingle-modeopticalfiber.Thismethod,however,suffersfroman 2 efficiencythatdependsontheorbitalangularmomentumoftheinitialmodeandonthepresenceofhigherorderradialmodes. Thereasonisthatoncethephasehasbeenflattened,thefieldretainsitsringedintensitypatternandisthereforeanontrivial r superpositionofpurelyradialmodes,ofwhichonlythefundamentalonecouplestoasinglemodeopticalfiber.Inthispaper, p westudytheefficiencyofthistechniqueboththeoreticallyandexperimentally.WefindthatevenforlowvaluesoftheOAM,a A largeamountoflightcanfalloutsidethefundamentalmodeofthefiber,andwequantifythelossesasfunctionsofthewaistof thecouplingbeamoftheorbitalangularmomentumandradialindices.Ourresultscanbeusedasatooltoremovetheefficiency 2 biaswherefair-samplingloopholesarenotaconcern.However,wehopethatourstudywillencouragethedevelopmentofbetter 2 detectionmethodsoftheorbitalangularmomentumcontentofabeamoflight. (cid:13)c 2014 OpticalSocietyofAmerica ] OCIScodes: 070.2580,230.6120,070.6042. s c i t p 1. Introduction beamcannotberemoved.Moreover,thedetectionefficiency o for high OAM modes can be extremely low, making it . s seem like those components are very weak. This issue is Structured light beams have wide applications in tech- c particularly important for those experiments that rely on i nologies such as lithography, nanoscopy, spectroscopy, s a high detection efficiency, for example, experiments that y optical tweezers and quantum cryptography [1–5]. Among aim at maximizing the heralding efficiency, or at closing a h these, beams with helical phase fronts exp(i(cid:96)φ), where (cid:96) p is an integer number and φ is the azimuthal angle in polar detection loophole [22,23], or at characterizing a state by [ measuringeachofitsOAMcomponentsseparately[24,25]. coordinates, are of particular interest since they can be used In this letter, we study projective measurements based on 2 for classical [6–8] and quantum communications [5]. These v beams carry a well-defined value of optical orbital angular phase-flattening followed by coupling into a SMOF. We 2 momentum (OAM) (cid:96)(cid:126) per photon along the propagation di- examine our theoretical model experimentally for various 1 mode projections, and we verify the trends in coupling rection.Duetotheseproposedapplications,therearefervent 5 efficiencies. 3 attemptstodesigninnovativedevicestogeneratesuchbeams. . Untilnow,possiblesolutionsincludespiralphaseplates[9], 1 computer-generated holograms imprinted onto spatial light 0 2. Theoreticalanalysis 4 modulators(holographicapproach)[10,11],modeconverters 1 (cylindrical lenses) [12], q-plates (nonuniform liquid crystal In our analysis we use Laguerre-Gauss (LG) modes, which v: plates) [13,14], and some types of OAM-sorters [15,16]. arecharacterizedbytwoindices:theradialindex p(nonneg- i These solutions are practical and widely used in various ex- ative integer) and the azimuthal number (cid:96) (integer), which X perimentalrealizations,andareimplementedbothinclassical areassociatedtothenumberofradialnodesandtotheOAM r andquantumregimes.However,withtheexceptionofmode value, respectively. The LG modes are a complete and or- a converter and a hologram with an intensity mask [17,18], thonormalfamilyofsolutionsoftheparaxialwaveequation, the above methods do not generate a pure Laguerre-Gauss i.e.(inDiracnotation)(cid:104)p(cid:48),(cid:96)(cid:48)|p,(cid:96)(cid:105) = δ δ ,andinthepo- p(cid:48),p (cid:96)(cid:48),(cid:96) mode[19,20].Insomecases,thereverseprocesscanbeused sitionrepresentationatthepupiltheyaregivenby todetect thespectrumofOAMofanunknownbeam,where eaaftcehrmitosdaeziismcuotuhpalledphtoasaesidnegpleenmdeondceeophtaiscablefiebnerfl(aStMtenOeFd). LGp,(cid:96)(r,φ):= (cid:115)πw22|((cid:96)|p+1+p!|(cid:96)|)! (cid:32)wr (cid:33)|(cid:96)|e−wr220L|p(cid:96)|2wr22 e−i(cid:96)φ, 0 0 0 Suchamethod,wasfirstintroducedbyMairetal.[21]inthe (1) quantum domain and then used commonly in the classical regime.Thistechniquemightsoundaccurate,butaswewill wherer,φarethetransversecylindricalcoordinates,w isthe 0 show, its shortcoming is that the OAM bandwidth that can beam waist radius at the pupil and L(cid:96)(.) is the generalized p be measured has a bias that depends on the characteristics Laguerre polynomial. The devices listed above can gener- of the beam. As a consequence, the bias for an unknown ateLGmodeswithlimitedfidelity.Themostconvenientand 1 1.0 1.0 1.0 0.7 0.8 |F0,`|2 ` 0.8 |F1,`|2 0.8 ⌘0` 0.6 ⌘1` ` 0.5 0.6 01 0.6 0 0.6 0.4 0.4 234 0.4 12 0.4 00..23 0.2 5 0.2 0.2 0.1 0.0 0.5 1 1.5 2 0.0 0.5 1 1.5 2 0.0 0.2 0.6 1 1.4 0.0 0.2 0.6 1 1.4 ⇢ ⇢ �/a �/a 0 0 Fig.1.(Coloronline)Intensityofthe p = 0(left)and p = 1 Fig. 2. (Color online) Coupling efficiency for projective (right)modesattheinputtothefiber.Asaneffectofdiffrac- measurementsforthemodesinFig.1.Foragivenchoiceof tion,localmaximaattheperipheryga√inintensityas pand|(cid:96)| optics,thecouplingefficiencyshowsabiasdependentonthe increase. Hereρ is inunits ofa0 = ( 2λf)/(πw0), whichis orderofthetransversemodes.Thehorizontalaxisisscanned thenaturalscalingfactorinthefar-fieldofthelens. by changing w , as a is inversely proportional to w . The 0 0 0 shadedboxindicatestheregionlimitedbytheactiveareaof theSLMs(seeexperimentalsection). commonlyusedmethodistheholographicapproach,withan embedded intensity masking. However, a mode-cleaning fil- ter cavity can be used to increase fidelity of the generated where σ is the beam waist radius of the SMOF Gaussian mode[26,27]. mode.ItisworthmentioningthatthemodeofaSMOFcanbe approximatedwithaGaussianbeam.Herewegivetheresults A. ProjectingonLGmodes for p=0and p=1: To perform a projective measurement, the mode LG (in p,(cid:96) our case generated by an SLM) is imaged onto a differ- η(cid:96) = |(cid:96)|!2 A2|(cid:96)|+1B (5) ent conjugate mode, LG∗ , and the resulting field is prop- 0 (2|(cid:96)|)! p(cid:48),(cid:96)(cid:48) agated and coupled into a SMOF in the far-field, which se- (|(cid:96)|+1)!|(cid:96)|! η(cid:96) = A2|(cid:96)|+1B(A2+B2(|(cid:96)|+1))2, (6) lects only the near Gaussian component. Imaging onto an 1 4(2+3|(cid:96)|)(2|(cid:96)|)! SLM is described by taking the product of the two modes, ci.oeo.rLdGinpa,(cid:96)te(rs⊥.T)LheGf∗pa(cid:48),r(cid:96)-(cid:48)fi(re⊥ld)dwishterribeurt⊥ionstbanecdosmfoerstahpeotlryannosmveirasle- w√here A = 2/(1 + σa202) and B = 2/(1 + σa202), and a0 = Gaussianfunctiongivenbya2D-Fouriertransform: ( 2λf)/(πw0) is the natural scaling factor at the fiber. No- tice that it is only the ratio σ/a that matters, as it should (cid:104) (cid:105) 0 Fp,(cid:96)(ρ,ϕ)=FT LGp,(cid:96)(r⊥)LG∗p(cid:48),(cid:96)(cid:48)(r⊥) , (2) be.TheseresultsareshowninFig.2,whereitispossibleto seethatthehighestcouplingefficiencyfordifferentmodesis whereFT standsforthe2D-Fouriertransform,andρandϕ achieved for different values of the waist at the fiber, which arethecylindricalcoordinatesinthefarfield.Thefactthata canbetunedbyadjustingthefocallengthoftheFourierlens. SMOF only supports the TEM mode limits this technique 00 to the case in which (cid:96)(cid:48) = (cid:96). Moreover, as oscillating radial phaseswouldalterthecouplingtotheSMOF,wealsochoose B. Projectingonspiralmodes p(cid:48) = p.Duetotheabsenceofanyangulardependenceafter thephaseflatteningstage,the2D-FouriertransformFT can Analternateandlessdesirablesolutionthatweexploreonly theoreticallyistoprojectontoapurelyspiralfieldei(cid:96)ϕ(which besimplifiedintotheHankeltransformoforderzero,i.e. canbeimplementedwithapitchforkhologramonanSLM), F (ρ,ϕ)= 2πeλiπfρ2 (cid:90) ∞rdr|LG (r )|2J (cid:32)2πrρ(cid:33). (3) whereby the effect is to simply cancel out the spiral phase p,(cid:96) iλf p,(cid:96) ⊥ 0 λf fromaninitialLGmode,inwhichcasethefieldatthefiberis 0 (cid:104) (cid:105) givenbyF (ρ,ϕ)=FT LG (r )ei(cid:96)φ .Thisequationcan p,(cid:96) p,(cid:96) ⊥ In Fig. 1 we show some examples of transverse intensity at besolvedanalytically,recallthattheEq.(2)hasananalytical thefiberforseveralvaluesof pand(cid:96).Noticethatthebeams solutiononlyonceavalueof pisspecified.However,forthis haveaGaussian-likeshapewithlocalmaximaattheperiph- specificcasethecouplingefficiencyisgivenby ery,whichgiverisetoaringedpatterninthetransverseplane. Amsov|(cid:96)e|satnodthpeboeuctoemr reinlgasrg.eTr,hitsheisbreealamteidntteontshiteyedffisetcrtibtuhtaitona η(cid:96) =(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)N(cid:96)(cid:88)p (−1)j(cid:32)p(cid:33)a(cid:96)fp,(cid:96)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)2 (7) largerphase-flatteneddoughnutbeamisturnedintoasmaller p (cid:12)(cid:12) p j j j (cid:12)(cid:12) (cid:12) j=0 (cid:12) andweakercentralspotatthefarfield,whichhasbeenstud- iedanddiscussedforspecialcasesin[28,29]. with The coupling efficiency to a SMOF, then, is given by the (cid:89)p overlapoftheGaussianmodesupportedbythefiberandthe fp,(cid:96) = (cid:0)|(cid:96)|+k+kH(j−k)(cid:1) far-fielddistributioncalculatedin(2): j k=1 √ η(cid:96) = πσ22 (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:90)0∞ρdρ(cid:90)02πdϕ F(cid:96)(ρ,ϕ) e−σρ22(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)2, (4) a(cid:96)j =(cid:0)1+(σ2/πaσ0)/2a(cid:1)0|2(cid:96)|+j+1, 2 0.5 ⌘` 0.35 ⌘` 0 0.30 1 0.4 0.25 0.3 0.20 0.2 0.15 0.10 0.1 0.05 0.0 0.2 0.6 1 1.4 0.2 0.6 1 1.4 �/a �/a 0 0 Fig.4.(Coloronline)Experimentallymeasuredoverallcou- pling efficiency for the modes shown in Fig. 1: (left) (cid:96) = 0...5 and (right) (cid:96) = 0...2. The shaded regions indicate adomaininwhichtheeffectivebeamsizeexceedstheactive areaoftheSLM,resultinginunreliabledata. Fig.3.(Coloronline)Experimentalsetupforgeneratingand Ref.[18,31].Anautomaticprogramoptimizedthecenterof detectingphotontransversestates.AlinearlypolarizedHeNe thehologramsonthebothSLMsandthecouplingefficiency laserbeamisspatiallycleanedwithtwolensesandapinhole. with the SMOF. The pixel size and active area of the SLMs Ahalf-waveplate(HWP)optimizesthefirstorderofdiffrac- were8µmand15.36mm×8.64mm.Thesecharacteristicsset tion on SLM , since SLMs are polarization dependent. The A thelimitsoftherangeofbeamwaistsandmodenumbersthat modeLG (r )producedbySLM isthenprojectedonthe p,(cid:96) ⊥ A couldbeinvestigated. modeLG (r )∗ onSLM .Theresultingfarfieldiscoupled p,(cid:96) ⊥ B Figure 4 shows the experimental results, to be compared intoasinglemodeopticalfiber(SMOF).Weimplementtwo with the coupling efficiency shown in Fig. 2. Aside from an 4f-system with unit magnification and a microscope objec- overall multiplicative efficiency of about 50% (which com- tivetoimageSLM onSLM andSLM onthemicroscope A B B prises reflection and scattering by microscope objective and objective.Irisesareusedtoselectthefirstorderofdiffraction fiber), the observed data (Fig. 4) and the theoretical model atthefar-fieldplaneofSLMs,wherehigherorderofdiffrac- (Fig. 2) agree, especially in those regions where the SLMs tionarewellseparated. resolutionandactiveareadonotaffectthequalityofthegen- erated and projected beams. The region below 0.2 σ/a is 0 (cid:113) (cid:16) (cid:17) limitedbyresolution,astoofewpixelsareused.Ontheop- whereN(cid:96) = 2|(cid:96)|+1 Γ |(cid:96)| +1 isthenormalizationfunc- p π(p+|(cid:96)|)!p! 2 positeendofthehorizontalaxisthebeamseventuallyfallout tion.H(j−k)in fp,(cid:96)istheunitstepfunction:itsvalueis0for ofthetheactivearea.Theseregionsareindicatedbyashaded j j < k and1for j ≥ k,andΓisthegammafunction,respec- area in the figures. Due to truncation mainly induced by the tively. As was expected, the coupling efficiency η(cid:96) depends microscopeobjective,thereasmalldeviationforthecaseof p on the ratio between the beam waist radius of the SMOF σ p = 1atlargebeamwaistsizewithrespecttothetheoretical andthesizeofthefieldatthefiberpositiona . calculation. However, the spread of these curves is an indi- 0 cation that the coupling efficiency differs for different initial modesandthatthereforethespectrumthatisultimatelymeas- 3. Experimentalresults ured is likely not representative of the true OAM distribu- tionofthebeam.Wecandeducethatprojectivemeasurement In order to verify the above theory, we prepared an experi- methodsshouldbeusedwithcare.Apossiblesolutioncould mental setup (Fig. 3) in which we examined the projective betocalibratethecouplingefficiencyfordifferenttransverse measurement method for different sets of transverse modes modesandthenpost-processthemeasurementdata,buteven withvaryingbeamsizes.Alinearlypolarizedlightbeamofa inthiscase,iftheradialdistributionoftheinitialfieldisun- HeNe laser is spatially cleaned, and illuminates the first of known,thebiasmaynotberemovable,astheradialdecom- two Pluto HOLOEYE SLMs (SLM ), to generate the ini- A positiondependsonthewaistthatischosenforthemodes.Of tial LG (r ) mode. This is then imaged on a second SLM p,(cid:96) ⊥ courseitisalsotruethatalinearsuperpositionofLGbeams (SLM ) via a 4f-system with unit magnification, where the B leads to an inaccurate result, since the projective measure- mode is projected onto LGp,(cid:96)(r⊥)∗. We used intensity mask- ment gives a bias among projection of different pure OAM ing to encode transverse modes with high fidelity [18,30]. states. TheproductfieldisfinallycoupledtoaSMOFwithmodedi- ameter of (cid:39) 4.8µm and a numerical aperture NA = 0.12 at the far-field of a 20× microscope objective (f = 9 mm and 4. Conclusions NA=0.40).Inordertonormalizethecouplingefficiencyfor different modes, we used a Newport power meter with two In conclusion, we studied the efficiency of projective readoutheadstorecordboththecouplingefficiencyandthe measurement as a method to characterize the transverse powerofthefieldjustbeforethefibersimultaneously.Recall mode of a light beam. Our analysis can be summarized thatduetotheintensitymaskingdifferentmodeshavediffer- in two important messages. The first is that although the entgenerationanddetectionefficiencies,formoredetailssee couplingefficiencyismodal-andbeamwaist-dependent,the 3 bias that is induced might be removed in post-processing 10. V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, Screw after a careful calibration. Of course, issues may arise Dislocations in Light Wavefronts, J. Mod. Opt. 39, 985-990 in the context of an experiment aimed at violating Bell’s (1992). inequalities: post-processed results could be regarded as 11. S.Ngcobo,I.Litvin,L.BurgerandA.Forbes, Adigitallaser an artificial manipulation of the data, and detection-related foron-demandlasermodes,Nat.Commun.4,2289(2013). 12. L.Allen,M.W.Beijersbergen,R.Spreeuw,andJ.P.Woerd- loopholes might be called into consideration. The second man,Orbitalangularmomentumoflightandthetransforma- message builds on the fact that the radial modal content of tionofLaguerre-Gaussianlasermodes, Phys.Rev.A458185 theinitialbeamdependsonthewaistw thatischosenforthe 0 (1992). decomposition, and the optimal choice (i.e. the one that re- 13. L.Marrucci,C.Manzo,andD.Paparo, Opticalspin-to-orbital sultsintheleastnumberofradialmodes)forageneralbeam angularmomentumconversionininhomogeneousanisotropic couldbefoundonlyafterfurthermeasurements.However,as media, Phys.Rev.Lett.96,163905(2006). one then should have to calibrate for this optimal size, this 14. E.Karimi,B.Piccirillo,E.Nagali,L.Marrucci,andE.Santam- is clearly not an ideal procedure, especially in the context ato,Efficientgenerationandsortingoforbitalangularmomen- ofquantumoptics,wheretheremightbeascarcenumberof tum eigenmodes of light by thermally tuned q-plates, Appl. photonsavailable).Itisourhopethatthisworkwillmotivate Phys.Lett.94,231124(2009). the search of new and better measurement techniques for 15. G.Berkhout,M.Lavery,J.Courtial,M.Beijersbergen,andM. OAM and more generally for the transverse radial modes of Padgett,EfficientSortingofOrbitalAngularMomentumStates alightbeam. ofLight, Phys.Rev.Lett. 105,105601(2010). 16. M. Mirhosseini, M. Malik, Z. Shi, R.W. Boyd, Efficient sep- arationoftheorbitalangularmomentumeigenstatesoflight, Nat.Comm.4,2781(2013). 17. J.Leach,M.R.Dennis,J.Courtial,andM.J.Padgett,Vortex 5. Acknowledgments knotsinlight,NewJ.Phys.7,55(2005). TheauthorsthankProf.GerdLeuchsforfruitfuldiscussions. 18. E. Bolduc, N. Bent, E. Santamato, E. Karimi, R. W. Boyd, H.Q., F.M.M., E.K. and R.W.B. acknowledge the support of Exact solution to simultaneous intensity and phase encryp- tionwithasinglephase-onlyhologram, Opt.Lett. 38,3546 the Canada Excellence Research Chairs (CERC) Program. (2013). M.J.P.andR.W.B.weresupportedbytheDARPAInPhopro- 19. E. Karimi, G. Zito, B. Piccirillo, L. Marrucci, E. Santamato, gram.M.J.P.supportedbytheroyalsociety. Hypergeometric-Gaussianmodes, Opt.Lett.32,3053(2007). 20. M.R.Dennis,K.O’HolleranandM.JPadgett, SingularOp- tics:OpticalVorticesandPolarizationSingularities,Prog.Opt. References 53293(2009). 21. A.Mair,A.Vaziri,G.WeihsandA.Zeilinger,Entanglementof 1. T.Grosjean,D.Courjon,andC.Bainier,Smallestlithographic theorbitalangularmomentumstatesofphotons,Nature412, marks generated by optical focusing systems, Opt. Lett. 32, 313(2001). 976(2007). 22. T.Ve´rtesi,S.Pironio,andN.Brunner, Closingthedetection 2. W. S. Hell, Far-Field Optical Nanoscopy, Science 316, 1153 loophole in Bell experiments using qudits, Phys. Rev. Lett. (2007). 104,060401(2010). 3. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop,Opti- 23. A.C.Dada,J.Leach,G.S.Buller,M.J.PadgettandE.Anders- calparticletrappingwithhighorderdoughnutbeamsproduced usinghighefficiencycomputergeneratedholograms, J.Mod. son,Experimentalhigh-dimensionaltwo-photonentanglement and violations of generalized Bell inequalities, Nat. Phys. 7, Opt.42,217(1995). 677(2011). 4. L.Paterson,M.P.MacDonald,J.Arlt,W.Sibbett,P.E.Bryant, 24. J.P.Torres,A.Alexandrescu,andL.Torner, Quantumspiral andK.Dholakia,ControlledRotationofOpticallyTrappedMi- bandwidthofentangledtwo-photonstates, Phys.Rev.A68, croscopicParticles,Science292,912(2001). 050301(R)(2003). 5. G.Molina-Terriza,J.P.Torres,andL.Torner,Twistedphotons, 25. H. Di Lorenzo Pires, H. C. B. Florijn, and M. P. van Exter, Nat.Phys.3,305(2007). Measurementofthespiralspectrumofentangledtwo-photon 6. G.Gibson,J.Courtial,M.J.Padgett,M.Vasnetsov,V.Pasko, states, Phys.Rev.Lett.104,020505(2010). S. M. Barnett, and S. Franke-Arnold,Free-space information 26. L.Carbone,C.Bogan,P.Fulda,A.Freise,andB.Willke,Gen- transferusinglightbeamscarryingorbitalangularmomentum, eration of high-purity higher-order Laguerre-Gauss beams at Opt.Express12,5448(2004). highlaserpower, Phys.Rev.Lett.110,251101(2013). 7. J.Wang,J.-Y.Yang,I.M.Fazal,N.Ahmed,Y.Yan,H.Huang, 27. M.Granata,C.Buy,R.Ward,andM.Barsuglia, Higher-order Y.Ren,Y.Yue,S.Dolinar,M.Tur,andA.E.Willner,Terabit Laguerre-Gaussmodegenerationandinterferometryforgrav- free-spacedatatransmis-sionemployingorbitalangularmo- itationalwavedetectors, Phys.Rev.Lett.105,231102(2010). mentummultiplexing.Nat.Photonics6,488(2012). 28. S.Slussarenko,E.Karimi,B.Piccirillo,L.Marrucci,E.San- 8. N.Bozinovic,Y.Yue,Y.Ren,M.Tur,P.Kristensen,HHuang, tamato, Universal unitary gate for single-photon spin-orbit A.E.Willner,andS.Ramachandran,Terabit-scaleorbitalan- four-dimensionalstates, Phys.Rev.A 80,022326(2009). gularmomentummodedivisionmultiplexinginfibers,Science 29. G.Molina-Terriza,L.Rebane,J.P.Torres,L.Torner,S.Car- 340,1545(2013). rasco,Probingcanonicalgeometricalobjectsbydigitalspiral 9. M.W.Beijersbergen,R.P.C.Coerwinkel,M.Kristensen,and imaging,J.Europ.Opt.Soc.Rap.Public.2,07014(2007). J.P.Woerdman,Helical-wavefrontlaserbeamsproducedwith 30. V.D’Ambrosio,F.Cardano,E.Karimi,E.Nagali,E.Santam- aspiralphaseplate, Opt.Commun. 112,321(1994). 4 ato,L.MarrucciandF.Sciarrino, Testofmutuallyunbiased bases for six-dimensional photonic quantum systems, Scien- tificReports3,2726(2013). 31. D.Flamm,C.Schulze,D.Naidoo,S.Schro¨ter,A.Forbes,and M.Duparre´, All-digitalholographictoolformodeexcitation andanalysisinopticalfibers,J.LightwaveTechnol.31,1023 (2013). 5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.