ebook img

Light scalar susceptibilities and the $π^0-η$ mixing PDF

0.23 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Light scalar susceptibilities and the $π^0-η$ mixing

Light scalar susceptibilities and the π0−η mixing Ricardo Torres Andrés and Ángel Gómez Nicola DepartamentodeFísicaTeóricaII.Univ.Complutense.28040Madrid.Spain. Abstract. WehaveperformedathermalanalysisofthelightscalarsusceptibilitiesinthecontextofSU(3)-ChiralPerturbation Theory to one loop taking into account the QCD source of isospin breaking (IB), i.e corrections coming from mu (cid:54)=md. We find that the value of the connected scalar susceptibility in the infrared regime and below the critical temperature is 1 entirelydominatedbytheπ0−η mixing,whichleadstomodel-independentO(ε0)corrections,whereε∼md−mu,inthe 1 combinationχuu−χud offlavourbreakingsusceptibilities. 0 Keywords: ChiralPerturbationTheory,Scalarsusceptibilities,Isospinbreaking 2 PACS: 11.10.Wx,12.39.Fe,25.75.-q,21.65.Jk n a INTRODUCTION induces mass differences for the light mesons through J the presence of virtual photons. These corrections have 0 Thelow-energysectorofQCDhasbeensuccessfullyde- beenincludedintheChPTeffectivelagrangian[6,7]by 1 scribed within the chiral lagrangian framework. Chiral meansoftermslikeL ,L andsoon,withetheelec- e2 e2p2 PerturbationTheory(ChPT)isbasedonthespontaneous tric charge. These terms are easily incorporated in the ] h breaking of chiral symmetry and provides a consistent, ChPT power counting scheme by considering formally p systematic and model-independent scheme to calculate e2=O(p2/F2). - p low-energy observables [1, 2, 3]. This formalism has Theaimofthisworkistoexplorewithinthethermal e beenalsoextendedtoincludefinitetemperatureeffects, ChPTformalismtheIBcorrectionstothenext-to-leading h in order to describe meson gases and their evolution quark condensates and their corresponding light scalar [ towards chiral symmetry restoration [4, 5]. The effec- susceptibilities, both physical objects being directly re- 1 tive ChPT lagrangian is constructed as an expansion of latedtochiralsymmetryrestoration.Moredetailscanbe v the form L =L +L +... where p denotes a me- foundin[8]. p2 p4 2 son momentum or mass compared to the chiral scale 7 Λ ∼4πF(cid:39)1GeVwhereF isthepiondecayconstant 7 inχthechirallimit.Eachtermoftheexpansionisaccom- LIGHTQUARKCONDENSATESTO 1 paniedbyalowenergyconstant(LEC)whichhastobe ONELOOP . 1 determinedexperimentally. 0 ChPT can take into account both QCD (due to the We have calculated to one loop the light quark con- 1 1 light quark masses diference mu−md (cid:54)=0) and electro- densates (cid:104)u¯u(cid:105) and (cid:104)d¯d(cid:105) in SU(3)-ChPT taking into ac- : magneticIBbymeansofnewtermsthatimplementthe count both sources of IB. The main distinctive feature v chiralsymmetrybreakingpattern.Theformergenerates with respect to SU(2)-ChPT calculations is that, in this i X a π0−η mixing in the SU(3) lagrangian which intro- case, as commented above, a π0−η mixing term ap- r duces corrections of order (md−mu)/ms which will be pears through the tree-level mixing angle ε defined by a important when considering some combinations of the tan2ε=√3md−mu.Thesumanddifferenceofquarkcon- light scalar susceptibilities at finite temperature. On the 2 ms−mˆ densatesare otherhand,thepresenceofelectromagneticinteractions (cid:18) (cid:19) (cid:104)u¯u+d¯d(cid:105)(T3)=(cid:104)u¯u+d¯d(cid:105)(03)+2F2B0 13(cid:0)3−sin2ε(cid:1)gπ0(T)+2gπ±(T)+gK0(T)+gK±(T)+31(cid:0)1+sin2ε(cid:1)gη(T) (1) (cid:18) (cid:19) sin2ε (cid:104)u¯u−d¯d(cid:105)(3)=(cid:104)u¯u−d¯d(cid:105)(3)+2F2B √ [g (T)−g (T)]+g (T)−g (T) (2) T 0 0 3 π0 η K± K0 whereB = Mπ2 +O(ε),and differentiatingwithrespecttoε∼ md−mu,sothesuppres- 0 mu+md sionofthethermalfunctionsissmalmlesrinthecaseofthe 1 (cid:90) ∞ p2 1 susceptibilitiesthaninthequarkcondensate. g(T)= dp , i 4π2F2 0 EpeβEp−1 Because of the linearity in ε of (2) for a small mix- ingangle,thecombinations χ −χ and χ −χ re- uu ud dd du withE2=p2+M2andβ =T−1. ceiveanO(1)IBcorrectionduetoπ0−ηmixing,which p i Thesubscript0referstothezerotemperatureresults, wouldnotbefoundifmu=md istakenfromthebegin- which can be found in [9]. As a nontrivial check of our ning.Theanalysisoftheε-dependenceof(2)showsthat, calculation,onecanseethatthecondensates(1)-(2)are up to O(ε), χuu (cid:39)χdd, so combinations like χuu−χdd, finite and µ-scale independent with the renormalization whichalsovanishwithmu=md,arelesssensitivetoIB. oftheLEC,includingtheEMones,givenin[3,7]. One can also relate these flavour breaking suscepti- bilities with the connected and disconnected ones [10], often used in lattice analysis [11, 12]: χ = χ , and dis ud LIGHTSCALARSUSCEPTIBILITIES χ = 1(χ +χ −2χ ).Fromthepreviousanalysis, con 2 uu dd ud ANDTHEROLEOFTHEπ0−η MIXING wegetχcon(cid:39)χuu−χud. Therefore, our model-independent analysis including IBeffectsprovidestheleadingnonzerocontributionfor Different light quark masses allow to consider three in- the connected susceptibility which arises partially from dependentlightscalarsusceptibilitiesdefinedas π0−η mixing. This is particularly interesting for the ∂ ∂2 lattice, where artifacts such as taste-breaking mask the χ =− (cid:104)q¯ q (cid:105)= logZ(m (cid:54)=m ). (3) ij ∂m j j ∂m∂m u d behaviour of χcon with the quark mass and T when ap- i i j proaching the continuum limit [12]. In fact, our ChPT For the sake of simplicity we are setting e=0 from approachisusefultoexplorethechirallimit(m →0) u,d nowon,sinceelectromagneticcorrectionsaresmalland orinfrared(IR)regime,whichgivesaqualitativepicture theyarenotrelevantforourpresentdiscussion.Then,to ofthebehaviournearchiralsymmetryrestoration.Inthis leadingorderinthemixingangle,thecontributionofthe regime Mπ (cid:28) T (cid:28) MK, and therefore we can neglect π0−ηmixinginthequarkcondensatesum(1)isoforder thermal heavy particles, which are exponentially supp- ε2 whereas for (2) it goes like ε. The thermal functions resed. g(T,M),i=π0,η aresuppressedbythosecoefficients Theleadingorderresultsfortheconnectedanddiscon- i i andthequarkcondensatesdonotreceiveimportantcor- nectedsusceptibilitiesatzerotemperaturearethefollow- rections.Theimportantpointisthatdifferentiatingwith ing respect to a light quark mass is essentially the same as B2 (cid:18) M2(cid:19) B2 M2 χIR(T =0)=8B2[2Lr(µ)+Hr(µ)]− 0 1+log K − 0 log η +O(ε), (4) con 0 8 2 16π2 µ2 24π2 µ2 3B2 (cid:18) M2(cid:19) B2 (cid:32) M2 (cid:33) χIR(T =0)=32B2Lr(µ)− 0 1+log π + 0 5log η −1 +O(ε). (5) dis 0 6 32π2 µ2 288π2 µ2 Thelogtermofequation(5)isthedominantatT =0 butionsoforderO(1)inthemixingangle. andcanbefoundin[10],buttheconnectedIRsuscepti- If we consider the pion gas in a thermal bath, then bility(4)isnotzeroatT =0,becauseitreceivescontri- expressions(4)-(5)aremodifiedaccordingto B2 T2 (cid:32) T2 (cid:33) (cid:18) (cid:20) M (cid:21)(cid:19) [χ (T)−χ (0)]IR= 0 +O εB2 +O exp − η,K , (6) con con 18M2 0M2 T η η 3B2 T (cid:32) T2 (cid:33) (cid:18) (cid:20) M (cid:21)(cid:19) [χ (T)−χ (0)]IR= 0 +O εB2 +O exp − η,K . (7) dis dis 16π M 0M2 T π η Figure (1) and (2) show, respectively, the connected 0.012 susceptib√ility (6) for fixed tree level eta mass (propor- tionalto B m intheIRregime),andthedisconnected 2B0 0.010 one (7) for s0evesral values of the light quark mass ratio 0 0.008(cid:76)(cid:68)(cid:144) m/m ,andalsowithfixedtreeleveletamass.Theleading Χcon 0.006(cid:72) scalinsgwithT andthelightquarkmassinthisregimefor (cid:45) T (cid:76) thedisconnectedpiecegoeslike √T ,i.ethesamescaling Χcon 0.004(cid:72) calculatedin[10,11];whereasthemconnectedsusceptibil- 0.002(cid:64) itygrowsquadraticinT overamassscalemuchgreater 0.000 thantheSU(2)Goldstoneboson’sone.Therefore,inthe 0 50 100 150 200 continuum limit, we only expect χ to peak near the dis TMeV transition. FIGURE 1. Connected IR susceptibility normalized to B2, 0 ACKNOWLEDGMENTS forfixedtreeleveletamass. (cid:72) (cid:76) R.T.A would like to thank Cándida García Jiménez and Buenaventura Andrés López for invaluable advice. Work partially supported by the Spanish research con- tracts FPA2008-00592, FIS2008-01323, UCM-BSCH 0.20 2B0 mmmmss(cid:61)(cid:61)00..0015 G01R35687/20)8. 910309 and the FPI programme (BES-2009- 0Χdis 0.15(cid:72)(cid:76)(cid:68)(cid:144)(cid:42)(cid:42)(cid:42) mm(cid:144)(cid:144)mmss(cid:61)(cid:61)00..12 (cid:45) 0.10 T (cid:76) (cid:144) REFERENCES dis (cid:72) (cid:144) Χ 00..0005(cid:64)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42)(cid:42) 12.. SJ..GWaesisnebreargn,dPHh.ysLiecuatAw9y6le,r3,2A7n(n1a9l7s9P)h.ys.158,(1984) 0 50 100 150 200 142. 3. J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465 TMeV (1985). FIGURE 2. Disconnected IR susceptibility normalized to 4. J.GasserandH.Leutwyler,Phys.Lett.B184,83(1987). B2,forseverallightquarkmass(cid:72) rati(cid:76)osandfixedtreeleveleta 5. P.GerberandH.Leutwyler,Nucl.Phys.B321,387 0 mass. (1989). 6. G.Ecker,J.Gasser,A.PichandE.deRafael,Nucl.Phys. B321,311(1989). 7. R.Urech,Nucl.Phys.B433,234(1995). 8. A.G.NicolaandR.T.Andres,inpreparation. Notethat,aswehavealreadymentioned,theetamass 9. A.G.NicolaandR.T.Andres,arXiv:1009.2170[hep-ph]. terminequation(6)andinthesubleadingcorrectionsin 10. A.V.SmilgaandJ.J.M.Verbaarschot,Phys.Rev.D54, the mixing angle comes from the ε-analysis and the IR 1087(1996). expansionoftheg1(Mπ),anddoesnothaveanythingto 11. S.Ejirietal.,Phys.Rev.D80(2009)094505. dowiththermaletas. 12. C.E.DeTar,PoSLATTICE2008(2008)001.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.