LIGHT INTENSITY INFLUENCES ON ALGAL PIGMENTS, PROTEINS AND CARBOHYDRATES: IMPLICATIONS FOR PIGMENT-BASED CHEMOTAXONOMY by Cidya Grant A Dissertation Submitted to the Faculty of The Charles E. Schmidt College of Science in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Florida Atlantic University Boca Raton, FL December 2011 ACKNOWLEDGEMENTS Special thanks to my research advisor Dr. J. W. Louda, for his guidance and support during this dissertation research. To the members of my dissertation committee: Drs. J. E. Haky, C. Parkanyi and S. Hagerthey, for answering pertinent questions and steering me on the right path to fulfilling the objectives and goals of this research. To the FAU-Harbor Branch Oceanographic Institute for NMR sample analyses: special thanks to Dr. Amy Wright for granting permission for instrument use and to her post- doctoral associate Dr. P. Winder for her assistance with experiment set-up. To the West natural products research group at FAU, particularly Dr. L. West, his post-doctoral associate Dr. P. Gupta and graduate student T. Vansach: thank you for the technical assistance with LC-MS analyses and NMR interpretation. To my teaching supervisors and mentors at FAU: Drs. D. Chamely-Wiik and E. Rezler, thank you for always challenging me to reach the highest academic standards, in research and teaching. The encouragement and assistance were all greatly appreciated. Funding for this material is based in part upon work supported by the National Science Foundation under Grant no. DGE: 0638662. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author and do not reflect the views of the National Science Foundation. iii ABSTRACT Author: Cidya Grant Title: Light Intensity Influences on Algal Pigments, Proteins and Carbohydrates: Implications for Pigment-Based Chemotaxonomy Institution: Florida Atlantic University Dissertation Advisor: Dr. J. W. Louda Degree: Doctor of Philosophy Year: 2011 Phytoplankton Chlorophyll a (CHLa), total protein, colloidal carbohydrates, storage carbohydrates and taxonomic pigment relationships were studied in two cyanophytes (Microcystis aeruginosa and Synnechococcus elongatus), two chlorophytes (Dunaliella tertiolecta and Scenedesmus quadricauda), one cryptophyte (Rhodomonas salina), two diatoms (Cyclotella meneghiniana and Thalassiosira weissflogii) and one dinophyte (Amphidinium carterae) to assess if algal biomass could be expressed in other indices than just chlorophyll a alone. Protein and carbohydrates are more useful currencies for expressing algal biomass, with respect to energy flow amongst trophic levels. These phytoplankton were grown at low light (LL = 37 µmol photons m-2 s-1), medium light (ML = 70-75 µmol photons m-2 s-1), and high light (HL= 200 µmol photons m-2 s-1). Even though pigment per cell increased with increasing light intensity, iv statistically light had very little effect on the CHL a: taxonomic marker pigment ratios, as they covaried in the same way. Protein, colloidal carbohydrates and storage carbohydrates per cell all increased with increasing light intensity, but they did not co- vary with CHLa. Statistical data showed that light intensity had a more noticeable effect on protein: CHL a, colloidal carbohydrate: CHLa, storage CHO: CHLa, therefore a general mathematical expression for these relationships cannot be generated. This study showed that light intensity does have an influence on these biomass indices, therefore, seasonal and latitudinal formulas may be required for meaningful algal biomass estimation. However, more studies are needed if that goal is to be realized. While studying the effects of light intensity on algal pigment content and concentration, a new pigment was isolated from a cyanophyte (Scytonema hofmanii) growing between 300-1800 µmol photons·m-2·s-1 and from samples collected in areas of the Florida Everglades. This pigment was characterized and structurally determined to possess indolic and phenolic subunits that are characteristic of scytonemin and its derivatives. In addition, the pigment has a ketamine functionality which gives it its unique polarity and spectral properties. Based on the ultra violet/visible absorbance data, this pigment was postulated to be protecting the chlorophyll a and cytochrome Soret bands as well as α and β bands of the cytochromes (e.g. cyt-c ) in the photosynthetic 562 unit. v LIGHT INTENSITY INFLUENCES ON ALGAL PIGMENTS, PROTEINS AND CARBOHYDRATES: IMPLICATIONS ON PIGMENT-BASED CHEMOTAXONOMY LIST OF TABLES ............................................................................................................. ix LIST OF FIGURES ............................................................................................................ X I. INTRODUCTION ........................................................................................................... 1 The working hypothesis .................................................................................................. 4 BACKGROUND ............................................................................................................ 4 Methods for estimating algal biomass ........................................................................ 4 Converting CHLa to biomass.................................................................................... 10 Select algal metabolites which may serve as biomass indices .................................. 17 Photosynthesis overview ........................................................................................... 23 Novel sunscreen pigment .............................................................................................. 30 Overall goals of this study ............................................................................................ 33 II. MATERIALS AND METHODS ................................................................................. 34 Experimental organisms................................................................................................ 34 Algal culturing .............................................................................................................. 36 Culture conditions ..................................................................................................... 37 Cell counting. ................................................................................................................ 38 Chemical Analyses........................................................................................................ 39 Algal protein extraction ................................................................................................ 39 Algal protein measurement ....................................................................................... 39 Algal colloidal and storage carbohydrate extraction .................................................... 40 Algal colloidal and storage carbohydrate measurement ........................................... 40 Algal total organic carbon (TOC) extraction ................................................................ 41 Colorimetric determination of extracted TOC samples ............................................ 42 vi Nutrient analyses ........................................................................................................... 42 Pigment Analyses.......................................................................................................... 43 Ultra Violet - Visible (UV/Vis) Analyses of Extracts .............................................. 45 High Performance Liquid Chromatography (HPLC) ................................................... 46 HPLC Data Calculations ........................................................................................... 47 Statistical analyses ........................................................................................................ 49 Isolation and characterization of a new pigment. ............................................................. 50 IR analysis ................................................................................................................. 52 Mass Spectrometry .................................................................................................... 52 NMR analyses ........................................................................................................... 54 Acetylation reactions ................................................................................................ 54 Deuterium exchange reactions .................................................................................. 55 III. RESULTS - STATISTICAL ANALYSES ................................................................. 56 Significance of the algal species used in this study .................................................. 56 Analyses overview .................................................................................................... 59 Synechococcus elongatus .............................................................................................. 60 Microcystis aeruginosa ................................................................................................. 70 Dunaliella tertiolecta .................................................................................................... 78 Scenedesmus quadricauda ............................................................................................ 87 Rhodomonas salina ....................................................................................................... 95 Cyclotella meneghiniana ............................................................................................ 103 Thalassiosira Weissflogii ............................................................................................ 111 Amphidinium carterae ................................................................................................ 119 IV. DISCUSSION ........................................................................................................... 127 Growth patterns ........................................................................................................... 127 Phytoplankton protein as a biomass indicator ............................................................ 128 Phytoplankton colloidal carbohydrate (CHO) as a biomass indicator ........................ 137 Phytoplankton storage carbohydrate (CHO) as a biomass indicator .......................... 139 Marker pigments as indicators of algal biomass ......................................................... 140 Phytoplankton chlorophyll a, protein and carbohydrate relationships to biovolume . 145 vii V. CONCLUSION: IMPLICATIONS FOR CHEMOTAXONOMY ............................ 147 VI. CHARACTERIZATION OF NOVEL PIGMENT .................................................. 149 The ‘scytoneman’ skeleton ......................................................................................... 149 New pigment – putative structure elucidation ............................................................ 155 Mass interpretation ...................................................................................................... 159 IR analysis ................................................................................................................... 166 Ecological significance of the new pigment ............................................................... 167 VII. APPENDICES ......................................................................................................... 170 I- Pigment calculation and data handling .................................................................... 171 II. Select photoprotectorant and accessory pigments .................................................. 179 III- Spectroradiometric output .................................................................................... 181 IV- Calibration curves and equations ......................................................................... 185 V- Retention times and UV-Vis maximas .................................................................. 187 VI-ANOVA tables ...................................................................................................... 190 VII- Cellular concentration of CHLa and photosynthates .......................................... 264 VIII- Typical chromatograms of species studied ........................................................ 267 IX- Specific growth rate (µ) curves ............................................................................ 271 X – NMR SPECTRA .................................................................................................. 275 XI – Mass Spectra ....................................................................................................... 284 VIII. REFERENCES....................................................................................................... 295 viii LIST OF TABLES Table 1: Methods for estimating algal biomass .................................................................. 5 Table 2: Marker pigments having stoichiometric relationships with CHLa in biomass estimations .......................................................................................................... 12 Table 3: Colloidal and storage carbohydrate composition of the taxonomic groups studied. ............................................................................................................... 20 Table 4: Gradient program used in FAU OGG laboratory ............................................... 47 Table 5: Gradient program used for LC-MS runs ............................................................. 53 Table 6: Cellular concentration of chlorophyll a and products of photosynthesis ......... 130 Table 7: Protein:CHLa (log ) ratios of the species as influenced by irradiance ........... 134 10 Table 8: Colloidal CHO/CHLa (log ) ratios as a function of irradiance ...................... 138 10 Table 9: Storage CHO/CHLa (log ) ratios as a function of irradiance ........................ 140 10 Table 10:Three new pigments isolated form Scytonema sp. ........................................... 152 Table 11: Scytonemin- a comparison of literature and observed values ........................ 153 Table 12: 1H and 13C NMR data for putative structure of pigment ............................... 157 ix LIST OF FIGURES Figure 1: Structure of Chlorophyll a ................................................................................... 2 Figure 2:. Xanthophyll cycling in (a) Chrysophytes and (b) Chlorophytes. .................... 26 Figure 3: Structure and UV/Vis spectra of Scytonemin ................................................... 31 Figure 4: New pigments isolated form Scytonema sp.. ..................................................... 32 Figure 5: Flow Chart of Analytical Scheme. .................................................................... 35 Figure 6: Schematic of inoculation procedure. ................................................................. 36 Figure 7: Synechococcus elongatus Marker pigment/CHLa ........................................... 62 Figure 8: Synechococcus elongatus Protein/CHLa relationships ..................................... 64 Figure 9: Synechococcus elongatus Colloidal CHO/CHLa .............................................. 66 Figure 10: Synechococcus elongatus Storage CHO/CHLa .............................................. 69 Figure 11: Microcystis aeruginosa Markerpigment/CHLa .............................................. 71 Figure 12: Microcystis aeruginosa Protein/CHLa relationships ...................................... 73 Figure 13: Microcystis aeruginosa Colloidal CHO/CHLa ............................................... 75 Figure 14: Microcystis aeruginosa Storage CHO/CHLa.................................................. 77 Figure 15: Dunaliella tertiolecta Marker pigment/CHLa ................................................ 79 Figure 16: Dunaliella tertiolecta Protein/CHLa relationships ......................................... 81 Figure 17: Dunaliella tertiolecta Colloial CHO/CHLa .................................................... 84 Figure 18: Dunaliella tertiolecta Storage CHO/CHLa ..................................................... 86 Figure 19: Scenedesmus quadricauda Marker pigment/CHLa ........................................ 88 Figure 20: Scenedesmus quadricauda Protein/CHLa relationships ................................. 89 Figure 21: Scenedesmus quadricauda Colloidal CHO/CHLa .......................................... 92 Figure 22: Scenedesmus quadricauda Storage CHO/CHLa ............................................. 94 Figure 23: Rhodomonas salina Marker pigment/CHLa ................................................... 96 Figure 24: Rhodomonas salina Protein/CHLa .................................................................. 98 Figure 25: Rhodomonas salina Colloidal CHO/CHLa ................................................... 100 x
Description: