ebook img

Light breeze in the local Universe PDF

1 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Light breeze in the local Universe

Astronomy&Astrophysicsmanuscriptno.outflow_SDSS_referee_final_arxiv (cid:13)cESO2017 January25,2017 Light breeze in the local Universe A.Concas1,P.Popesso1,M.Brusa2,3,V.Mainieri4,G.Erfanianfar1,andL.Morselli1 1 ExcellenceClusterUniverse,Boltzmannstr.2D-85748Garching,Germany 2 DipartimentodiFisicaeAstronomia,UniversitádegliStudidiBologna,V.leBertiPichat,6/2-40127,Bologna,Italy 3 INAF−OsservatorioAstronomicodiBologna,viaRanzani1,I-40127,Bologna,Italy 4 EuropeanSouthernObservatory,Karl-Schwarzschild-str.2,85748Garching,Germany Received;accepted 7 1 0 ABSTRACT 2 Weanalyzeacompletespectroscopic sampleofgalaxies(∼600,000)drawnfromSloanDigitalSkySurvey(SDSS,DR7)tolook n forevidenceofgalacticwindsinthelocalUniverse.Wefocusontheshapeofthe[OIII]λ5007emissionlineasatracerofionizing a gasoutflows.Westackourspectrainafinegridofstarformationrate(SFR)andstellarmasstoanalyzethedependenceofwindson J thepositionofgalaxiesintheSFRversusmassdiagram.Wedonotfindanysignificantevidenceofbroadandshifted[OIII]λ5007 3 emission linewhich weinterpret asno evidence of outflowing ionized gasin theglobal population. Wehavealso classifiedthese 2 galaxies as star-forming or AGN dominated according to their position in the standard BPT diagram. We show how the average [OIII]λ5007profilechangesasfunctionofnatureofthedominantionizingsource.Wefindthatinthestar-formingdominatedsource ] theoxygenlineissymmetricandgovernedbythegravitationalpotentialwell.TheAGNorcompositeAGN\star-formationactivity A objects,incontrast,displayaprominentandasymmetricprofilethatcanbewelldescribedbyabroadgaussiancomponentthatisblue- G shiftedfromanarrowsymmetriccore.Inparticular,wefindthatthebluewingsoftheaverage[OIII]λ5007profilesareincreasingly prominent intheLINERsandSeyfertgalaxies.Weconclude that,inthelow-redshiftUniverse,"pure"star-formationactivitydoes . h notseemcapableofdrivingionized-gasoutflows,while,thepresenceofopticallyselectedAGNseemstoplayaprimaryroletodrive p suchwinds.WediscusstheimplicationsoftheseresultsfortheroleofthequenchingmechanisminthepresentdayUniverse. - o Keywords. galaxies:general–galaxies:evolution–galaxies:ISM–galaxies:starformation–galaxies:nuclei–ISM:kinematics r t s a 1. Introduction energetic to eject the gas away from the galaxy potential well [ andquenchthe star formation(see for instanceChevalier1977 1ThemoststrikingfeatureofthehistoryofourUniverseisadras- for energy-drivenoutflows, Murrayetal. 2005 for momentum- vtic decreasein the star formationactivityof thegalaxypopula- driven outflows, and to Hopkinsetal. 2014 for effect of multi- 9tionbyalmostanorderofmagnitudeoverthelast10Gyr,aftera ple stellar feedback in cosmological simulations). Above stel- 6 phaseofhighandratherconstantactivity(e.g.Lillyetal.1996; larmasses of1012 M , instead,morepowerfuloutflowsarere- 5 ⊙ Madauetal.1998;Madau&Dickinson2014,foracomprehen- quiredtoletthegasescapefromthedeepergalaxypotentialwell. 6 sivereview).Whichprocessorwhichcombinationofprocesses, The energyand radiationgeneratedby accretiononto the mas- 0 .so called “queching"ofthe star formationactivity,causessuch siveblackhole(BH),inthemostmassivegalaxies,exceedsthe 1decreaseisstillmatterofanintensivedebate.Itisapparentthat bindingenergyofthegasbyalargefactor(seeFabian2012for 0identifyingthequenchinprocess(es)iscrucialforestablishinga a complete review). Therefore, energetic feedback from active 7 completeviewofhowgalaxiesevolveacrosscosmictime. galactic nuclei (AGN) is believed to provide an important and 1 : Accordingtothemostaccreditedgalaxyformationmodels, effective mechanism to eject the gas away by powerful winds, vfrom the semi-analytical (SAM) ones to the more recent mass stop the growth of the galaxy and stifle accretion onto the BH Xiabundance matching models, in the central galaxies, the effi- (DiMatteoetal.2005;DeLuciaetal.2006;Crotonetal.2006; ciencyinconvertingthegasfractioninstarsreachesamaximum Hopkinsetal.2006;DeBoweretal.2006;Hopkinsetal.2014; r aat halo mass ∼ 1012 M with only ∼ 20 % of their baryons Henriquesetal.2016). ⊙ currently locked up in stars (see for example Crotonetal. However,althoughthesemodelsareverysuccessfulinrepro- 2006; Guoetal. 2011 based on the Millennium Simulation, ducing a large variety of observational evidence, in particular, and Mosteretal. 2010; Behroozietal. 2010; Yangetal. 2012 the evolution of the stellar mass function (e.g. Henriquesetal. among the mass abundance matching models). The efficiency 2016),theystilllackaclearobservationalconfirmation.Indeed, drops down steeply towards both sides of this mass threshold a lot of effort has been spent in the last decade from the ob- (e.g.Madauetal.1996;Baldryetal.2008;Conroy&Wechsler servational point of view to observe the presence of such out- 2009;Guoetal.2010;Mosteretal.2010,2013;Behroozietal. flows at any mass scale and to study their effect on the evolu- 2010, 2013). There is an overall agreement, from the theoreti- tion of the galaxy star formation activity to identify a possible cal point of view, that below halo masses of 1012 M , the de- relationof cause and effect. Steideletal. (2010) observeblue- ⊙ creasing SF efficiency is likely to be due to gas eating and re- shiftedLyman-αemissioninmostoftheSFgalaxypopulationat movalassociatedwiththestarformationactivity.Indeed,galac- redshift∼2andassociate suchemissionlinedisturbancetoSF- ticwindsdrivenbytheenergyandmomentumimprintedbymas- induced outflow (see also Erb 2015 for different emission line sivestarstothesurroundingISM,arebelievedtobesufficiently study).Atsomewhatlowerredshift,butinalargeredshiftwin- Articlenumber,page1of13 A&Aproofs:manuscriptno.outflow_SDSS_referee_final_arxiv dow (0.5 < z < 1.5), Martinetal. (2012) use UV rest-frame absorption features to identify blue-shifted components as in- dicationof outflow andfind evidenceof outflowingmaterialin massive,highlystarforminggalaxies(seealsoRubinetal.2014 2 600 forsimilarstudies). Powerful AGN-driven outflows are recently observed 500 both at low (e.g. Feruglioetal. 2010; Villar-Martínetal. 1 2011; Rupke&Veilleux 2011, 2013; Greeneetal. 2012; yr] 400 Mullaneyetal. 2013; RodríguezZaurínetal. 2013; M/O • C20ic1o2n;eTeretmalo.nt2i0e1t4a)l.2a0n0d7;hBigruhsareedtsahl.if2t01(5e.;gP.erMnaaieotlainl.o2e0t1a5l;. R) [ 0 300ensity F D Crescietal. 2015). However, it is not clear yet if the AGN S feedback,intheformofgalacticflows,isaspecificpropertyof og( 200 l -1 thebulkoftheAGNpopulationorifitconcernsonlyasubclass 100 of these objects Brusaetal. (2015). In addition, it is unclear if they cause a quenching or an enhancement of the galaxy SF -2 0 activity(e.g.Crescietal.2015). 9.0 9.5 10.0 10.5 11.0 11.5 12.0 Furthermore,new observationare revealingthe ubiquity of log(M/M ) O • SFinducedoutflowsinveryactivelystar-forminggalaxiesatall cosmicepochs(seeVeilleuxetal.2005andErb2015foracom- Fig.1.SFR-M⋆planeforDR7SDSSgalaxies.Theblacksboxesrepre- prehensiveoverview).Theyusuallyareassociatedwithenergetic sent the fine grid used for the stacking of the total sample.The white line shows the position of the so-called "Main-Sequence" (MS) of starburst phenomena (e.g. Heckmanetal. 1990; Pettinietal. star−forminggalaxies.TheMSiscomputedasthemodeandthedisper- 2000; Shapleyetal. 2003; Rupkeetal. 2002, 2005a,b; Martin sionoftheSFRdistributioninstellarmassbinsfollowingtheexample 2005, 2006; Hill&Zakamska 2014), while their impact in the of(Renzini&Peng2015). normal star-forming galaxies (Chenetal. 2010; Martinetal. 2012;Rubinetal.2014;Ciconeetal.2016)andtheirglobalef- fectonthebaryoncycleisstilldebatedSteideletal.(2010). 2015; Carnianietal. 2015). Also, [OIII]λ5007 emission is These studies have traditionally been carried out with rel- expected to lie in spectral regions free from strong stellar atively small samples of galaxies. The availability of large atmosphericabsorptions.Intheserespect,itisexpectedthatthe spectroscopic data sets such as the SDSS Yorketal. (2000), [OIII]λ5007 emission line can be used with great success to allows to extend such studies dramatically in size. Signifi- identifyorconfirmgalacticwinds.Weexplorehowtheemission cant improvement has been recently made in this regard (e.g. line profile changes as a function of key physical parameters: Greene&Ho 2005; Chenetal. 2010; Mullaneyetal. 2013; stellar mass, SFR and primary photoionization processes (SF, Ciconeetal. 2016). However, all these resent works have fo- AGN). In doing, we analyse both the presence of a second cused only on a particular category of galaxies. For exam- broader Gaussian component and non-parametric variation of ple, the optically-selected AGN in Mullaneyetal. (2013) and theline-profile. Greene&Ho(2005)andthestar-forminggalaxieswithoutAGN Thisworkis organizedasfollows.InSection2, we present contributioninChenetal.(2010)andCiconeetal.(2016). our sample selection and physical properties. In Section 3 we The aim of this paper is to explore the global propri- describethemethodusedtoextractandanalyzethe[OIII]λ5007 eties of galactic winds in the local Universe a) by analyzing emissionline fromourstackedspectra.We presentanddiscuss their incidence in the galaxy population, b) by identifying themainresultsinSection4andfinallywesummarizeourfind- the powering mechanism: star formation, AGN or a mixed ingsinSection5.Throughoutthispaper,weassumethefollow- contribution of the two, and c) by clarifying what impact ingcosmologicalparameters:H =70kms−1Mpc−1,Ω =0.3 0 M they might have on the galaxy SF activity. For this purpose andΩ =0.7 Λ we investigate the outflow signatures in a large sample of optical spectra at redshift z < 0.3, drawn from the Sloan DigitalSkySurvey(SDSS;Abazajianetal.2009),byusingthe 2. Datasample ionized gas as traced by the [OIII]λ5007 emission line. The [OIII]λ5007 emission line is one of the strongest features in 2.1.SDSSspectra the rest-frame optical 1D spectrum of both active star-forming and AGN dominated galaxies. This line is produced through The galaxy sample analyzed in this paper is drawn from the a forbidden transition emitted by low-density and warm gas SloanDigitalSkySurvey,(SDSS, Yorketal.2000).Inparticu- (T∼ 104K). Thus, any disturbed kinematic, such as a broad- lar,weusethespectroscopiccatalogcontaining∼930,000spec- ening and asymmetry of the [OIII] line, is only due to the trabelongingtotheseventhdatarelease(DR7,Abazajianetal. presenceofstrongbulkmotionsofionizedinterstellargas(e.g. 2009). We use only objects includedin the Main Galaxy Sam- for local galaxies Heckmanetal. 1990; Veilleuxetal. 1995; ple(MGS,Straussetal.2002)whichhavePetrosianmagnitude Lehnert&Heckman1996;Sotoetal.2012;Westmoquetteetal. r < 17.77 and redshift distribution extends from 0.005 to 0.30 2012; Mullaneyetal. 2013; RodríguezZaurínetal. 2013; , with a median z of 0.10. The spectra cover a wavelength Bellocchietal. 2013; Rupke&Veilleux 2013; Liuetal. range from 3800 to 9200 Å. They are obtained with 3′′ diam- 2013; Harrisonetal. 2014; Zakamska&Greene 2014; eteraperturefibersthat,intheadoptedcosmology,corresponds Cazzolietal. 2014; Arribasetal. 2014; Ciconeetal. 2016, to≈0.31−13.36kpcfortheredshiftrangez=0.005−0.3.The and at high redshift Shapiroetal. 2009; Newmanetal. 2012; instrumentalresolutionisR ≡ λ/δλ ∼ 1850−2200andamean Harrisonetal. 2012; Cano-Díazetal. 2012;Genzeletal. 2014; dispersionof 69 km s−1 pixel−1. Further details concerningthe FörsterSchreiberetal. 2014; Brusaetal. 2015; Pernaetal. DR7spectracanbefoundathttp://www.sdss.org/dr7/. Articlenumber,page2of13 A.Concas etal.:LightbreezeinthelocalUniverse subsample number percent NBins TOT 621990 100% 148 SF 128258 20.6% 88 Sy SF-AGN 46081 7.4% 81 1.0 AGN-SF 69421 11.2% 119 LINERs 34640 5.6% 99 TYPE2 10679 1.7% 77 β) 0.5 unClass 332911 53.5% 132 H OIII]/5007 0.0 Table1.Basicdataaboutthesubsamplesdiscussedinthetext. g([ o l SF AGNSF LINERs more exhaustivedetails). The SFR measurementsare based on −0.5 the Brinchmannetal. (2004) approach.They use the Hα emis- sionlineluminositytodeterminetheSFRs forthestarforming galaxies.Forallothergalaxies,thathaveemissionlinescontam- −1.0 SFAGN inated by AGN activity or not measurable emission lines, the −1.5 −1.0 −0.5 0.0 0.5 SFRsareinferredbyD4000-SFRrelation(e.g.Kauffmannetal. log([NII] /Hα) 2003b). All SFR measures are corrected for the fiber aperture 6584 followingtheapproachproposedbySalimetal.(2007). Fig. 2. The distribution of the galaxies in our sample in the BPT line-ratio diagram. The solid curve is the theoretical demarcation of Weapplyastellarmasscutatlog(M/M⊙) ≥ 9.0tolimitthe Kewleyetal. (2001) , that separates star-forming galaxies and com- incompletenessin thelow massregime(seealso Morsellietal. posites from AGN. The dashed (Kauffmannetal. 2003a ) and dotted 2016). In this way, we ended up with a global sample of ∼ Stasinskaetal. (2006) curves indicate the empirical division between 600000galaxies. composite SF-AGN and AGN-SF and the pure star-forming galax- The galaxy sample is shown in the SFR-stellar mass plane ies, respectively (seetext for more details).The horizontal lineat log in Fig.1. The color code is according to the number density of ([OIII]/Hβ) = 0.5 is the demarcation criteria between TYPE 2 (or galaxiesper bin of SFR and stellar mass. We overplotalso the Seyfert,Sy)andLINERsgalaxiesshowedinKewleyetal.(2006). Main Sequence od star forming galaxies (MS hereafter), esti- matedasthepeak(mode)ofthedistributioninthestarforming galaxyregion,similarlytoRenzini&Peng(2015). 2.3.BPTclassification 2 SF Emission line diagnostic diagrams are a powerful way SFAGN to probe the nature of the dominant ionizing source in 1 AGNSF galaxies. Baldwin,Phillips,&Terlevich(1981, BPT) and after r] LINERs y themVeilleux&Osterbrock (1987) demonstrate that it is pos- M/O • Sy sible to distinguish normal star-forming from AGN dominated ) [ 0 galaxiesby considering two pairs of emission lines ratios. The R F MPA-JHU catalog also includes, for each single spectrum, the S ( flux measurements of [OIII]λ5007, Hβ, Hα and [NII]λ6584 g lo -1 emissionlines.Asshowedin Stasinskaetal.(2006),thegalax- ies that lie in the left side of the Kauffmannetal. (2003a) de- marcation line includes also objects that have an AGN con- -2 tamination.In order to better segregatethe purely star-forming 9.0 9.5 10.0 10.5 11.0 11.5 12.0 galaxies from AGN hosts, we refine the BPT classification of log(M/M ) our sample instead to using the selection criteria performed O • by Brinchmannetal. (2004). By using the two optical line Fig.3.LocationofSF,SF−AGN,AGN−SF,LINERs,TYPE2(orSy) ratios:[OIII]λ5007/Hβand[NII]λ6584/Hα,then,wedefinenew galaxiesintheSFR-M plane.Fromoutsidetoinsidethecontoursen- ⋆ galaxiessubsamples on the basis of the prevalence of different compass25,50and75percentofthedatapoints.Theblacklineshows photoionization processes. All galaxies with no or very weak themodeanddispersionoftheMS. emissionlines(S/N < 4)arenotclassifiedintheBPTdiagram andwecalltheseobjects"unClass".ForthelineswithS/N >4, 2.2.Starformationratesandstellarmasses weadoptedthefollowingclassesofemissionlinenebulae: Weadoptthestarformation-stellarmassplane(hereafterSFR- SF Pure star-forminggalaxies,objectswith emission line ratio M ) in order to classify galaxies in their fundamental proper- ⋆ belowtheStasinskaetal.(2006)curve. ties. Inordertodefinethepositionforeachgalaxyinthe SFR- M plane, we use the SFR and M measurements taken from ⋆ ⋆ the MPA-JHU catalog1. Thestellar massesare obtainedfroma SF−AGN The objects whose emission lines are due primarily fit tothe spectralenergydistribution(SED) byusingthe SDSS to star formationactivity but thathave also a secondminor broad-bandopticalphotometry(seeKauffmannetal.2003bfor componentduetoAGNpresence.Theyarelocatedbetween theStasinskaetal.(2006)andKauffmannetal.(2003a)de- 1 http://www.mpa-garching.mpg.de/SDSS/DR7/ markationlines. Articlenumber,page3of13 A&Aproofs:manuscriptno.outflow_SDSS_referee_final_arxiv AGN−SF The composite transition region objects that lying inside the region defined by Kauffmannetal. (2003a) and Kewleyetal.(2001)curves. EQW Å S/N 0.0 0.5 1.0 1.5 2.0 2.5 3.0 5 10 15 20 25 30 Type2(orSeyfertgalaxy,Sy)AGNandLINERs All the ob- jectslocatedabovethediagnosticsoutlinedofKewleyetal. (2001) and separated in Seyfert galaxies and and low- 1 ionization nuclear emission-line regions (LINERs) with M/yr]O • tlhoeg([dOeImIaI]r/cHatiβo)n=c0r.i5te.ria showed in Kewleyetal. (2006), R) [ 0 F S The corresponding diagnostic diagram is shown in Fig. 2. og( -1 l Wesplitthetotalsampleinsixclasses:SF,SF−AGN,AGN−SF, -2 LINERs,TYPE2andunClass(cf.Table1).InFig.3wereport 9.0 9.510.010.511.011.512.09.0 9.5 10.010.511.011.512.0 the contourlevelsat25%,50%and75%of thedistributionfor log(M/M ) log(M/M ) O • O • thefiveBPTclasses,labeledindifferentcolors,intheSFR-M Fig.6.EQW(leftpanel)andtotallinesignal-to-noiseratio,SNR(right ⋆ plane. panel) in the SFR-M⋆ diagram for the total sample. The white line Throughoutthe paperwe willalso comparethe aboveBPT showsthemodeanddispersionoftheMS.Thegalaxybinswhittotal emissionlineSNR<8areplottedingreycolor. classeswiththeTYPE1AGNdefinedinMullaneyetal.(2013). Due to the dominating AGN contribution, a measurement of the SFR and stellar mass derived from the spectra and optical broadbandphotometryisnotavailableforsuchclassofgalax- each bin. However, we check the the error is very stable from ies. Therefore, they can not be placed in the SFR-stellar mass themostpopulatedbins(∼4000galaxyspectra)tothelesspop- plane. ulatedones(50galaxies). 3. Method 3.2.Fittingthestellarcontinuum In this section, we describe how we measure the properties of Inordertomeasurereliablyalso theweakemission linesemit- the[OIII]λ5007emissionline. ted by the ionized gas, the stellar continuum must be properly removed. To this purpose, we use the penalized pixel-fitting (pPXF)algorithm,whichisapubliclyavailableIDLcode,devel- 3.1.Stackedspectra opedby Cappellari&Emsellem (2004) to find the best fit stel- Theauroral[OIII]λ5007emissionlinecanbeveryfaintandtyp- lar continuum and separate the nebular emission lines in each icallyundetectableinmostSDSSgalaxyspectra.Toreducethe stacked spectrum. In brief, pPXF is able to parameterized the contribution of random fluctuations in the measured flux and line-of-sight velocity distribution (LOSVD) through a Gauss- then improve the signal-to-noise ratio (SNR) we perform our Hermite expansion of the absorption-line profile by fitting the analysisinstackedopticalspectra.Inparticular,weusetheme- stellarcontinuumwithasetoflinearcombinationofsimplestel- dian stacked spectra taken from Concas et al. in prep. In brief, larpopulation(SSP) inputmodelspectra.InthepPXFanalysis we dividethe SFR-M parameterspace into small bins,shown weadoptalibraryoftemplatespectrabasedonthestellarpopu- ⋆ in Fig.1. The boundaries of this grid together with the abun- lation models from Bruzual&Charlot (2003), hereafter BC03. dance of sources per bin, are chosen to provide a fine sam- BC03 models are available at a resolution of 3 Å FWHM in pling of the SFR-M plane and at the same time to have good the wavelength range between 3200 − 9500 Å, which is very ⋆ statisticsineachbin.Weadoptbinsof∆log(M/M ) = 0.2and similar to the one of SDSS spectra (≈ 1800 − 2000 between ⊙ ∆log(SFR) = 0.2 dex for the total sample and larger bins for 3800 to 9200 Å). Our templates include simple stellar popula- the analysis of the individual BPT classes, where the statistics tion with age 0.01 ≤ t ≤ 14 Gyr and four different metallic- is reduced. We request a minimum of 50 galaxies in each bin. ity, Z/Z = 0.2,0.4,1,2.5by assuming a Chabrier (2003) ini- ⊙ ThegalaxyspectraarefirstcorrectedfortheforegroundGalactic tial mass function (IMF). We perform the pPXF analysis for reddeningusingtheextinctionvaluesfromSchlegeletal.(1998) eachstackedspectruminthewavelengthrange:[4800,5050]Å, then they are transformedfromvacuumwavelengthsto air and wheretheHβ,[OIII]λ4959,5007emissionlinesarelocated.The shiftedtotherestframe.Wenormalizeeachspectrumtothestel- results are a best-fit stellar continuum.For each galaxy bin we larcontinuumwiththemeanfluxfrom6400Åto6450Å,where subtractthebest-fitstellarcontinuumfromtheobservedstacked thespectrumisfreeofstrongemissionandabsorptionlines.Fi- spectrum. This "residual" spectrum is used for any analysis of nally,the rest-framespectra in each bin are stacked togetherto [OIII]λ5007 emission line features. An example of the fitting produceasinglemedianspectrum.Weobtain148galaxystacked procedureresultisshowninFig.4,whichshowstheverygood spectraforthetotalsampleand88,81,119,99,77and132for agreementoftheobservedandthemodelcontinuumoveralarge thesubclassesdescribedinsection2.3.Thedifferentnumbersof wavelengthrangeinthe[OIII]emissionlineregion.Inorderto stackedspectrabetweenthetotalsampleandthesubsamplesis checkthestabilityofthefittingprocedureandtoestimatetheer- due to the fact thattowardsthe quiescenceregionless and less roroftheresidualspectrum,weapplyabootstrappingtechnique galaxiescanbeclassifiedintheBPTdiagram.Insuchregionof by performing the fit on the sample of bootstrapped stacked the SFR-M plane we analyze the [OIII]λ5007 profile only in spectra in each SFR-stellar mass bin (see previous paragraph). ⋆ thestackedspectrumofthetotalsample. The stability of the procedureis confirmed by the fact that the Theerrorofthestackedspectraisobtainedthrougha boot- erroroftheresidualspectrumisconsistentoronlyslightlylarger strappinganalysis.Thestatisticalerrorobtainedinthiswayde- (atmaximum30%)withrespecttotheerrorofthestackedspec- pendsonthenumberofspectrausedinthestackinganalysisin tra. As an example, the panel a) of Fig. 5 shows the residual Articlenumber,page4of13 A.Concas etal.:LightbreezeinthelocalUniverse 11..11 Hβ [OIII]4958 [OIII]5007 11..00 x u fl e 00..99 v ti a el r 00..88 obs best−fit model 00..77 0.5 0.4 al 0.3 u d 0.2 si e 0.1 r 0.0 4800 4850 4900 4950 5000 5050 5100 wavelength [Å] Fig.4.ExampleofourcontinuumfitandsubtractionperformedforthestackedspectrumwhitSFR=100.2M yr−1 and M = 1010.5M .Thetop ⊙ ⋆ ⊙ panelshowstheobservedstackedspectrum(blackline)andourbest-fitstellarcontinuummodel(redline).Thelightgrey-shadedregionsindicate thewavelengthrangewheretheHβ,[OIII]λ4959and[OIII]λ5007emissionlinesarelocated.Thebottompanelshowstheresidualspectrum(cyan line)andtheleveloffluctuationsinthefitresiduals(dashedline). spectruminthe[OIII]λ5007emissionlineregion.Thequalityof 3.3.1. Profilefitting ourcontinuumfitisguaranteedbythelowlevelof fluctuations inthefitresiduals(dashedlinesinFig.5).Theerroroftheresid- We fit the [OIII] line profile in the residual spectrum with one ualspectrumis,then,usedtoestimatetheSNRoftheemission and two Gaussian components by using an IDL MPFIT fitting code.Inbothcaseswefitthelinecenter,widthandamplitude. lineintheresidualstackedspectra. The single Gaussian fit allows to estimate the global line For comparison we show also the result of the continuum width,σ[OIII] andtheSNRoftheline.Theobservedσobs ofthe subtraction method applied by Mullaneyetal. (2013) on the lineis the convolutionof the realwidth ofthe emitted line and TYPE1 AGN sample ( Fig. 5, panel b). They use, in particu- the instrumental resolution. To remove the instrumental effects lar, the single continuum subtracted spectra , provided by the wecorrecttheσ whitσ = σ2 −σ2 ,whereσ2 is obs [OIII] q obs inst inst SDSSpipeline.Whilethismethodturnsouttobereasonablefor the instrumentaldispersion. For SDSS data the σ change as inst AGNspectrawheretheemissionlinehasaveryhighSNRwith a function of wavelength, and it varieswith the location of the respect to the continuum, it is not applicable to galaxy spectra objectontheplateandthetemperatureonthenightoftheobser- withlowerSNRemissionlines,asintheconsideredcase. vations.Therefore,inordertousethecorrectσ foralltheour inst stackedspectra,weusetheinstrumentalresolutionmeasuredfor eachsinglespectrumfromtheARClampsprovidebytheMPA- JHU group. The mean σ in the [OIII] wavelength range for 3.3.Measuring[OIII]λ5007emissionlineprofiles inst oursampleis∼60kms−1. The double Gaussian fit allows to estimate the significance Weanalyzetheoxygenlineshapewithtwodifferentapproaches: of a secondcomponentand its line profile. We take the double a)byfittingthelinewithasingleandadoubleGaussiantoiden- Gaussianprofileasthebestfitforthe[OIII]lineprofilewhenit tify a possible second broader component with respect to the leadstoareductionoftheχ2valuebymorethan30%.Thisisto systemicone,andb)byadoptinganon-parametricanalysis.The avoidamisidentificationofasecondcomponentwhenthedou- twomethodsarecomplementary.Thefirstoneallowsustostudy ble Gaussian fit provides two Gaussian components with con- separately the variouscomponentsthat determine the observed sistentwidthandcenteranddifferentamplitude.Indeed,inthis line,whilethesecondprocedureisindependenttotheparticular casethesumofthetwoGaussianwouldleadanyhowtoasingle fittingfunctionanditisrelativelyinsensitivetothequalityofthe Gaussiancomponent.Wecheckthatareductionoftheχ2 value data(seePernaetal.2015,Zakamska&Greene2014,Liuetal. byatleast30%isagoodthresholdtodistinguishtheneedofa 2013). doubleGaussianfit. Articlenumber,page5of13 A&Aproofs:manuscriptno.outflow_SDSS_referee_final_arxiv 1.0 a) b) x u 0.5 fl e v ti a el r 0.0 −0.5 4990 5000 5010 5020 4990 5000 5010 5020 wavelength [Å] wavelength [Å] Fig.5.Average[OIII]λ5007profileofthegalaxysubsamplewhitSFR=100.2M yr−1 and M =1010.5M .Inpanela)weshowtheemissionline ⊙ ⋆ ⊙ derivedwithourmethod.Inpanelb)weshowtheemissionlineforthesameSFRand M galaxiesobtainedbythemethodof(Mullaneyetal. ⋆ 2013).Theblacksymbolsaretheobservedflux.Themagentalinesillustratesthetwo-Gaussiancomponentandthebluecurveshowsthecombined fit.Thelevelofscatterintheresidualsofourfitisshownwiththehorizontaldashedlines.Theverticalgraylinemarktherest-framepositionof the[OIII]line. When the doubleGaussian fit is retained as the best fit, we useittoestimatea)theSNRofthesecondcomponenttocheck its significance, b) to compare the flux percentage of the sec- SNR II gaussian % flux II gaussian ond componentwith respect to the systemic contribution,c) to 0.0 0.5 1.0 1.5 2.0 2.5 3.00.0 0.1 0.2 0.3 0.4 0.5 estimatethevelocityshiftofthecentroidwithrespecttothesys- temic redshift and d) to estimate the line width of second and systemiccomponent. yr] 1 The errors on all measured quantities are obtained with a M/O • bootstrappingtechnique.Thefitisrepeatedonthebootstrapping R) [ 0 sample (see previousparagraph)to obtainedthe distribution of F S all measured quantities and so the dispersion as an estimate of g( -1 o theerror. l -2 9.0 9.510.010.511.011.512.09.0 9.5 10.010.511.011.512.0 3.3.2. Non-parametricanalysis log(M/MO •) log(M/MO •) Fig. 7. Signal-to-noise ratio, (SNR) and flux enclosed in the second To have a model independent measurement of emission broaderGaussiancomponent(rightandleftpanel)intheSFR-M dia- ⋆ line profiles we also apply a non-parametric approach. gramforthetotalsample.Thewhitelineshowsthemodeanddispersion This approach is commonly used in AGN outflows studies oftheMS.ThegalaxybinswhittotalemissionlineSNR<8areplotted ingreycolor. (Liuetal. 2013; Rupke&Veilleux 2013; Zakamska&Greene 2014;Harrisonetal.2014;Brusaetal.2015;Pernaetal.2015). Briefly, we construct the cumulative flux of the line as a func- tion ofvelocity: F(v) = v f(v′)dv′, in the observedspectrum W80 = v90 − v10, where v90 and v10 are the velocities R−∞ withoutusinganyparticularfittingfunction.Then,wedescribe at which 90% and 10% of the line flux accumulates, re- thevelocitywidth,asymmetryandthewingsprominenceofthe spectively. For a purely Gaussian velocity profile the W80 [OIII]linebyusingthefollowingnon-parametricquantities: is proportionalto the standard deviation (σ) and full width athalfmaximum(FWHM),asshowninthefollowingequa- 1. Velocity width.The velocity width, W80 , is the velocity tion,W80=2.563×σ=1.088×FWHM.ValuesofW80are range that encloses 80% of the total flux. It is defined by giveninkms−1. Articlenumber,page6of13 A.Concas etal.:LightbreezeinthelocalUniverse B/T 0.1 0.2 0.3 0.4 0.5 0.6 22 22 22 yr] 11 yr] 11 yr] 11 /MO • /MO • /MO • R) [ 00 R) [ 00 R) [ 00 F F F S S S g( --11 g( --11 g( --11 o o o l l l --22 --22 --22 99..00 99..55 1100..00 1100..55 1111..00 1111..55 1122..00 99..00 99..55 1100..00 1100..55 1111..00 1111..55 1122..00 99..00 99..55 1100..00 1100..55 1111..00 1111..55 1122..00 log(M/M ) log(M/M ) log(M/M ) Fig.10.Leftpanel:σ /σO • intheSFR-M⋆plane.AthighstellarmassthO •egaskinematicsfollowsthevelocitydispersionO •ofthestellarcom- [OIII] ⋆ ponent.CentralpanelB/TmedianvaluesintheSFR-M⋆diagram.Thebulge-diskdecompositionistakenfromSimardetal.(2011)catalogue. Weusethevalues calculatedwithther filter.Right panel: σ distributionintheSFR-M⋆plane. Atlow stellarmassestheσ isbelow tothe ⋆ ⋆ instrumentalresolution.Inallpanels,thewhitelineshowsthemodeanddispersionoftheMS. Line wings r9050 v75−v25.InaGaussianprofiler9050isequalto2.4389,the 2.6 2.8 3.0 3.2 3.4 22 r9050increasesinprofileswithmoreextendedwings. Theerroroneachquantitiesisestimated,asintheprevious 11 case, via bootstrapping analysis. Each quantity is measured in yr] the bootstrapping sample related to each residual spectrum in M/O • ordertoestimatethedispersionofthedistributionasameasure R) [ 00 oftheerror.Thisisdone,inparticular,tocheckifeachquantity SF deviatesmorethen3σfromthevaluecorrespondingtoaGaus- og( sian distribution with the same width of the observed line. For l --11 this purpose, we use the measure of the global line width esti- matedwith thesingle Gaussianline profile,asexplainedin the --22 previousparagraph. 99..00 99..55 1100..00 1100..55 1111..00 1111..55 1122..00 log(M/M ) O • 4. Results Fig.8.Prominenceofthelinewingsr9050intheSFR-M diagramfor ⋆ thetotalsample.Thewhitelineshowsthemodeanddispersionofthe In this section we show our results for the total sample and MS.ThebinsbelowM =1010.5M⊙haver9050valuesconsistentwith ⋆ forthefiveBPT classes:SF, SF−AGN,AGN−SF, LINERsand 2.44within3σ.ThegalaxybinswhittotalemissionlineSNR< 8are TYPE2 AGNs. We show also the comparison with the TYPE1 plottedingreycolor. AGNsampleofMullaneyetal.(2013). 4.1.[OIII]lineintheglobalsample W80 [km/s] σ [km/s] Weanalysethelinefluxandshapeofthetotalsampleasafunc- [OIII] 300 400 500 600 0 50 100 150 200 250 tion of position in the SFR-M⋆ diagram. Fig. 6 show the dis- tributionofthe[OIII]λ5007equivalentwidth(EQW,leftpanel) and corresponding signal-to-noise ratio (right panel), SNR, of 1 yr] the total emission line in the SFR-M⋆ plane. As expected, the M/O • MS region is populated by the higher EQW values and higher R) [ 0 SNR, while towards the passive region, the line is intrinsically SF weak, with EQW ≤ 1 Å and low SNR, SNR≤ 8. In order to g( -1 ensurearobustandaccuratemeasurementofthetotalemission o l lineshape,weimposeaSNRlimitonthe[OIII]lineof8.Inlater -2 figuresofthepaper,allbinswhittotalemissionlineSNR<8are 9.0 9.510.010.511.011.512.09.0 9.5 10.010.511.011.512.0 log(M/M ) log(M/M ) plottedingraycolorandtheyarenotconsideredintheanalysis. O • O • Fig. 9. Non-parametric w80 and σ (left and right panels, respec- WeusetheresultsofthebestGaussianfit,singleordouble, [OIII] tively), in the SFR-M diagram for the total sample. The white line to check the significance of the second Gaussian component. ⋆ showsthemodeanddispersionoftheMS. When a single Gaussian turns out to be the best fit, we set the SNRofthesecondcomponentequaltozero.Whenthebestfitis providedbyadoubleGaussian,weestimatetheSNRofthesec- 2. Asymmetry.ThedimensionlessparameterR=((v95−v50)− ondcomponentand the percentageof line flux encapsulatedin (v50−v05))/(v95−v05)givesameasureoftheasymmetry thatcomponent.ThisisdoneineachbinoftheSFR-stellarmass of the velocity profile relative to the median velocity. In a plane.TheleftpanelofFig.6showtheSNRofthesecondGaus- perfectsymmetricprofileRisR=0 sian component,while the rightpanel shows the percentageof fluxencapsulatedinit.DespitetheveryhighSNRofthe[OIII] 3. Linewings.Theprominenceofthelinewingsintheprofile line, the second broad Gaussian componentis only marginally is the non-parametric analog of the kurtosis, with r9050= detectedwithaSNR∼2.5-3atmassesabove∼ 1010M andina ⊙ W90/W50, where W90 and W50 are the width comprising largerangeofSFR.Allowermasses,the[0III]lineisperfectly 90% and 50% of the flux, W90 = v95 − v05 and W50 = consistentwith a single Gaussian andnoadditionalcomponent Articlenumber,page7of13 A&Aproofs:manuscriptno.outflow_SDSS_referee_final_arxiv Thus, we conclude that there is only marginalevidence for abroadcomponentinthe[OIII]λ5007emissionlineprofileand !!""(( onlyinaspecificlocusoftheSFR-stellarmassplane.Whende- !!""’’ tected,suchcomponentis centeredatthe systemicredshiftand 2 2 !!""&& thereisnoevidenceofablue-shift,asindicationofwind,asin - 1 Mullaneyetal.(2013).MostofMSregioniswellrepresentedby 0 !!""%% .*//* !!""$$ gpaolnaexnietswwitihthno[OaIsIyIm]pmroefitrlyeawnedllwfiittthedlobwykausritnogsliesvGaaluusessi.aOnncloyma-t - )*+, !!""## highmasses (1010.5−1011M⊙) we observea marginallyhigher kurtosisandsothepresenceoflinewings.However,wedonot !!""!! find for these galaxies an excess of the line [OIII] width with !!!!""## respecttothegalaxyvelocitydispersionprovidedbythestellar SF SFAGN AGNSFLINERsTYPE2TYPE1 component.Indeed,onlyasmallpercentageofthe[OIII]fluxis encapsulatedin the wings. This indicatesthat likely a low per- centageofthegasinthesegalaxiesismovingawayinaverylow velocitywind. Fig. 12. Mean values of the flux percentage enclosed in the second Gaussian component for all the BPT classes: SF,SF-AGN, AGN-SF, 4.2.TrendswithAGNandSFactivity LINERs,TYPE2and TYPE1. Thefluxincreasing withtheincrease of theAGNcontribution. Theerror barsshown thedispersion around The absence of significantoutflow signature in the globalpop- themeanvalues. ulationdoesnotexcludethepossibilitythatstrongwindsmight beobservedinspecificclassesofobjects.Inordertoinvestigate thispossibilityin thissectionweanalyzethe[OIII]line profile in the BPT subclasses, and so as a functionof differentioniza- isneededtofitthelineprofile.Thefluxencapsulatedinthesec- tion sources. As described in Section 2 we split oursample in: ond broad component,though, is less than 10% in most of the SF, SF−AGN, AGN−SF, LINERs, TYPE 2 and unClassgalax- MSregion,withtheexclusionsofthehighestmassbins,whereit ies. We perform a first analysis on the stacked spectra of each reachesavalueof20%.Itreachesasimilarpercentage(20-25%) subclassand,then,westudythestackedspectraasafunctionof alsointheregionbelowtheMS,thesocalledgreenvalley. thepositionintheSFR-M planeforeachsubclassseparately. ⋆ This is also confirmed by the non-parametricanalysis. The Fig. 11 shows our multicomponent emission line fit to the vaules of the line wings parameter, r9050, as a function of the stacked [OIII] line profile of each subclass. It is immediately position in the SFR-M⋆ plane, is shown in Fig. 8. The r9050 apparent, that the significance of a second broad and blue- parameter is consistent with the value of a Gaussian function shifted component is remarkably increasing with the increase (r9050 ∼ 2.44)alongandaroundthe MSrelation,upto stellar of the AGN contribution.While the star forminggalaxiespop- massesof1010.5M .Thekurtosisisexceeding,withpoorsignif- ⊙ ulation show a symmetric Gaussian [OIII] line profile, the in- icance(∼ 2σ),theGaussianvalueuptovaluesof2.9−3inthe creaseofthenuclearactivityintheSF-AGNandAGN-SFleads massrange1010.5−11 M ,wherethepercentageoffluxencapsu- ⊙ to the raise of significant line wings. LINERs, TYPE 2 and lated in the broader componentis of 20-25%. For comparison, TYPE1AGN,inparticular,showalsoaslightblue-shiftofthe the kurtosisof a Lorentzianprofile, with strong wings, is 6.31. broader component ( characterized by a velocity dispersion of Inallbins,the[OIII]lineappearstobesymmetrical,withtypical 470.1±110.0,363.1±14.0and363.1±14.0km/s,respectively) Rvaluesalwaysconsistentwith0within3σofsignificance. withrespecttothesystemicvelocity(∆V < 70km/s)andcorre- Fig.9showsthedistributionofthelinewidthintheSFR-M⋆ spondingnegativevaluesintheasymmetryparameter.Theflux plane, estimated either with the dispersionσ[OIII] or the analo- enclosed in the second Gaussian component goes from 0% in gousnon-parametricW80(rightandleftside,respectively).We the SF galaxies 48% in the TYPE 1 AGN, consistently with observeaprogressiveincreaseofthelinewidthwiththegalaxy Mullaneyetal.(2013),asshowninFig.12. stellar mass M⋆ at any SFR. This is expected since the [OIII] The study of the [OIII] line profile of the individual BPT emissiontracesthegalaxypotentialwell.Wecomparethevalue classesasafunctionofthelocationintheSFR-stellarmassplane of σ[OIII] in any bin of the plane with the mean galaxy veloc- showsthefollowingaspects: itydispersion,estimatedfromtheabsorptionfeaturesduetothe stellarcomponentprovidedbytheMPA-JHUpubliccatalog.The - SF galaxies, dominating the MS region up to masses of leftpanelofFig. 10showsthatathighstellar masses, the ratio 1010.8M ,arecharacterizedbyapurelyGaussian[OIII]line ⊙ betweenσ[OIII] andthegalaxyvelocitydispersionisconsistent profile with no evidence of a second broader component. with1.Onlyatlowermasses(<1010.5 M⊙)theratioincreasesto This is confirmed by the fitting procedure and by the non- highervalues.Howeverinthisregionnoneofthepreviousindi- parametric method that indicates values of asymmetry and cators(fluxenclosedinthesecondbroadercomponent,asymme- linewingsconsistentwiththeGaussianvalueswithin1.5σ. tryR or thekurtosisr9050)showssignatureofa nonGaussian lineprofile.Thus,weascribesuchincreasetotwofactors:a)the - SFgalaxieswithasmallcontributionfromthecentralAGN galaxies in this region tend to be pure disks, as shown by the (SF-AGN) show evidence of a second broader component meanB/Tof∼ 0.1asderivedfromSimardetal.(2011,central only at the 2σ level. Such galaxies,as shownin Fig. 3, are panelofFig.10),thusthegascouldshowadifferentkinematics mainlylocatedintheMSregionatstellarmasses>1010M . ⊙ thanthestellarcomponent;b)inthisregionofthediagram,the MPA-JHU public catalog provide values of the stellar velocity - galaxies with a dominating AGN contribution (AGN-SF) dispersionlowerthantheSDSSresolutionof70km/s,whichwe show evidence of a second broadercomponentat more the assumeasalowerlimit.(rightpanelofFig.10). 3σonlyonandabovetheMS. Articlenumber,page8of13 A.Concas etal.:LightbreezeinthelocalUniverse Velocity Offset [km s−1] Velocity Offset [km s−1] Velocity Offset [km s−1] −1000 −500 0 500 1000 −1000 −500 0 500 1000 −1000 −500 0 500 1000 11..00 11..00 11..00 SF SFAGN AGNSF % flux II gauss = 0.00 % flux II gauss = 0.12 % flux II gauss = 0.23 00..88 00..88 00..88 R = 0.01+−0.02 R = 0.06+−0.03 R = −0.01+−0.04 e flux 00..66 rw98005 0= =2 6 25..4974+ [−km0. 0s4−1] e flux 00..66 rw98005 0= =3 7 20..7098+ [−km0. 0s7−1] e flux 00..66 rw98005 0= =4 6 21..9409+ [−km0. 0s8−1] ativ 00..44 ativ 00..44 ativ 00..44 el el el r r r 00..22 00..22 00..22 00..00 00..00 00..00 44999900 44999955 55000000 55000055 55001100 55001155 55002200 55002255 44999900 44999955 55000000 55000055 55001100 55001155 55002200 55002255 44999900 44999955 55000000 55000055 55001100 55001155 55002200 55002255 wavelength [Å] wavelength [Å] wavelength [Å] Velocity Offset [km s−1] Velocity Offset [km s−1] Velocity Offset [km s−1] −1000 −500 0 500 1000 −1000 −500 0 500 1000 −1000 −500 0 500 1000 11..00 11..00 11..00 LINERs TYPE 2 TYPE 1 % flux II gauss = 0.27 % flux II gauss = 0.29 % flux II gauss = 0.48 00..88 00..88 00..88 R = −0.05+−0.04 R = −0.04+−0.01 R = −0.04+−0.06 e flux 00..66 rw98005 0= =5 7 26..9139+ [−km0. 1s0−1] e flux 00..66 rw98005 0= =4 9 25..9598+ [−km0. 0s2−1] e flux 00..66 rw98005 0= =6 4 38..1322+ [−km0. 1s4−1] ativ 00..44 ativ 00..44 ativ 00..44 el el el r r r 00..22 00..22 00..22 00..00 00..00 00..00 44999900 44999955 55000000 55000055 55001100 55001155 55002200 55002255 44999900 44999955 55000000 55000055 55001100 55001155 55002200 55002255 44999900 44999955 55000000 55000055 55001100 55001155 55002200 55002255 wavelength [Å] wavelength [Å] wavelength [Å] Fig.11.Emission-lineprofilefitstocompositespectraindifferentclassesofphotoionizationprocesses:SF,SF−AGN,AGN−SF,LINERs,TYPE2 andTYPE1.Theblacksymbolsaretheobservedflux.Thefluxerrors,ineachpoint,areshowedinred.Thegreenlineshowsthesingle-Gaussian fit.Themagentalinesillustratesthetwo-Gaussiancomponentandthebluecurveshowsthecombinedfit.Thelevelofscatterintheresidualsofour fitisshownwiththehorizontaldashedredlines.Thesignificanceofasecondbroadandblue-shiftedcomponent(magentacurves)isremarkably increasingwiththeincreaseoftheAGNcontribution.IneachpanelweshowthederivedvaluesoffluxenclosedinthesecondbroaderGaussian component,asymmetryR,prominenceofthelinewingsr9050andw80. Velocity Offset [km s−1] Velocity Offset [km s−1] Velocity Offset [km s−1] −600 −400 −200 0 200 400 600 −600 −400 −200 0 200 400 600 −600 −400 −200 0 200 400 600 11..00 SUPMS MS SUBMS SF 00..88 SFAGN x AGNSF u e fl 00..66 LINERs v TYPE 2 ati 00..44 el r 00..22 00..00 44999955 55000000 55000055 55001100 55001155 44999955 55000000 55000055 55001100 55001155 44999955 55000000 55000055 55001100 55001155 wavelength [Å] wavelength [Å] wavelength [Å] Fig.13.Variationoftheobserved[OIII]emissionlineprofileasafunctionoftheSFendAGNcontributionforgalaxieslocatedindifferentSFR bins.Intheleft,middleandrightpanelsweshowthegalaxybinslocatedabove(SUPMS),inside(MS)andbelow(SUBMS)theMS,respectively with∆SFR=0.4,0.0and−0.4dex.ThegalaxybinsshowedhaveM⋆=1010.5M⊙.The[OIII]emissionlineappearatanyM⋆andSFR - LINERsandTYPE2galaxiesshowahighSNR(>3)second in the SFR-stellar mass plane. As shown in Fig. 14, SF-AGN broader component independently on their location on the arepreferentiallylocatedathighSFRandstellarmasses,while SFR-stellar mass plane. See Fig. 3 for their distribution in AGN-SFandLINERsdominatethegreenvalleyregion.Indeed, theplane. afterremovingsuchgalaxiesfromtheglobalsample,thevalueof thelinewingsparameterbecomesconsistentwiththeGaussian - theresultsareconfirmedbythenon-parametricmethod.The value all over the plane. This indicates that the deviation from analysisoftheasymmetryRshowsthatfortheSFobjectthe thepureGaussianbehaviorobservedinFig.8isduetogalaxies linetendtobesymmetrical(R∼0)whileintheLINERsand dominatedbytheAGNcontribution.Inturn,thissuggeststhat, TYPE2weobserveR∼ −0.1,consistentwiththeresultsof ifthe secondbroadercomponentis interpretedasanindication Zakamska&Greene(2014)forasampleofSDSSobscured ofgalacticwind,such windislikelydrivenbythe AGN,while quasars. SF seems notcapable of drivingany wind at any mass or SFR An example of the AGN effect on the [OIII] line profile is value. showninonemassbinabove(leftpanel),on(centralpanel)and Inordertobettercomparethe[OIII]linewidthwiththere- below(rightpanel)theMSinFig.13. specttothegalaxyvelocitydispersioninthedifferentsubclasses, The location of the AGN-SF, LINERs and TYPE2 AGNs weshowinFig.15the[OIII]linewidth,measuredbythestan- perfectly matches the location of the plane where we observe darddeviationσ asafunctionofstellarvelocitydispersion [OIII] in the global population a line wings value slightly larger than σ foralltheionizationclasses:SF,SF−AGN,AGN−SF,LIN- ⋆ the Gaussian value. This is confirmed also by the BPT analy- ERsandTYPE2.Giventhatthemedianinstrumentalresolution sis applied to the stacked spectra, as a function of the location of SDSS spectra is ∼ 70 km s−1 we restrict the analysis to the Articlenumber,page9of13 A&Aproofs:manuscriptno.outflow_SDSS_referee_final_arxiv UnClass SF SF+AGN AGN+SF TYPE 2 LINERs 22 11 yr] /MO • R) [ 00 F S g( SF o --11 l SF+AGN AGN+SF LINERs --22 TYPE 2 99..00 99..55 1100..00 1100..55 1111..00 1111..55 1122..00 log(M/M ) O • Fig.14.BPTclassificationforthetotalsampleintheSFR−M⋆plane. Fig.15.σ plottedagainstσ MPA-JHUmeanvaluesforthefive [OIII] ⋆ binswithσ abovethislimit.Forclarity,wecollectourσ ionizationclasses(SF,SF−AGN,AGN−SF,LINERsandTYPE2).We ⋆ [OIII] valuesinbinsofσ⋆,with∆σ⋆ = 20kms−1.Thedifferention- showthemediananddispersionvaluesofσ[OIII]andσ⋆inbinsofσ⋆, ization sources are indicated with differentcolors as labeled in with∆σ⋆ = 20kms−1.FilledsymbolsaretheobjectsinthemainSF, thefigure.Atfixedσ ,wefindthatthevelocitydispersionsmea- SF−AGN,AGN−SF,LINERsandTYPE2subsamples.Opentriangles ⋆ aretheunClassobjects.Thesolidblacklinedenotesσ =σ . suredfortheionizedgasincreaseswiththeincreaseoftheAGN [OIII] ⋆ activityfromthe"pure"SFtotheTYPE2galaxies. mass plane. A marginaldetection, at the ∼ 2σ level, is ob- tainedonlyatstellarmasses> 1010.5M in alargerangeof 4.2.1. TheunClassobjects ⊙ SFR. This is confirmed by the observation of a line width As mentioned in section 2.3, the unClass subsample includes parameter slightly larger (again at the ∼ 2σ level) than the a large amount of galaxies that are impossible to classify indi- valuepredictedfora pureGaussianline profileinthe same vidually using the BPT diagram. In order to take into account region of the plane. The line profile appears to be always these large fraction of galaxies, we decide to performthe BPT symmetric, even when a second broader component might analysisinthe medianstackedspectra.Followingthe approach contribute.Thefluxpercentageenclosedinthebroadercom- of Concas et al. in prep. we use a combination of the publicly ponent,whendetected,isoftheorderto10%inmostofthe availablecodespPXFCappellari&Emsellem(2004)andGAN- plane and it reaches values of 20-25% at very high masses DALF Sarzietal. (2006) to fit and remove the stellar contin- andSFRandinthegreenvalley. uumandtoderiveemissionlinefluxesofthefouremissionlines used in the BPT diagram(i.e. Hβ, [OIII]λ5007,[NII],Hα). As – Thecomparisonofthelinewidthofthe[OIII]withtheveloc- expected, the majority of the stacked spectra show very weak ity dispersion obtained from the absorption stellar features emissionlines.Thesegalaxiesaremainlylocatedinthesocalled reveals a good agreement in most of the plane, indicating quiescentregion.AthigherSFRvalues,alltheunClassstacked thatthe[OIII]tracestheunderlyinggalaxypotentialwellas spectrashowallthefouremissionlines(Hβ,[OIII]λ5007,[NII] the stellar component. Only in few very low SFR and stel- andHα)withS/N> 4toclassifythemintheBPT diagram.We lar mass bins we observed a disagreement, that we ascribe checkthatthesegalaxiesfollowthesametrendshownbytherest tospectralresolutionissuesanddifferencesinthestellarand ofthesample,withtheprominenceofthesecondbroadercom- gaskinematicsinpurelydiskgalaxies. ponentincreasinginparalleltoinincreaseofthenuclearactivity – The analysis of the [OIII] line profile as a function of the contribution. BPTclassificationrevealsthatforthe"pure"SFgalaxies,the ionizedinterstellargastracedbythe[OIII]λ5007linenever 5. DiscussionandConclusions appearsto be outflowing.The line profile is perfectlyfitted by a single Gaussian without need of a second component. In this work we investigate the presence of galactic winds in a This holds in all the regions of the SFR-stellar mass plane large spectroscopic sample of ∼ 600000 local galaxies drawn dominatedbySFgalaxies,suchastheMS. from the spectroscopic SDSS DR7 database. In particular, we usethedeviationoftheforbidden[OIII]λ5007emissionlinepro- – The significance of a second broader Gaussian component filefromaGaussianasaproxyforthegalacticwinds.Weusethe increases with a clear trend with the increase of the AGN spectral stacking technique to increase the SNR of the spectra contributiontothegalaxyspectrum,withamaximumforthe and to determine how the average [OIII]λ5007profile changes AGN TYPE1 of Mullaneyetal. (2013). The flux enclosed asafunctionofthekeygalaxyphysicalparameters,suchasSFR in thesecondcomponentrisessteadilyfrom0%in pureSF andM .Wealsoexplorehowthelineprofilesrelatetothepartic- galaxyto∼48%intheTYPE1AGNs. ⋆ ularphotoionizationmechanisms:SForAGNactivity.Weana- – The analysis of the [OIII] line profile of each BPT class in lyzetheoxygenemissionlineprofilebyperformingalinefitand theSFR-stellarmassdiagramshowsthatgalaxieswithanin- anon-parametricanalysis.Ourmainresultscanbesummarized creasingAGNcontributionoccupypreferentiallytheregion asfollows: ofthediagramwheretheglobalpopulationshowamarginal – Intheglobalgalaxypopulation,wefindnoevidenceofasec- deviation from the Gaussian line profile: at high mass and ondGaussianbroadercomponentinmostoftheSFR-stellar SFR and in the green valley. If AGN hosts are removed Articlenumber,page10of13

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.