Examensarbete 30 hp Juni 2013 Life assessment of rubber articles in fuels Emmy Selldén Abstract Life assessment of rubber articles in fuels Emmy Selldén Teknisk- naturvetenskaplig fakultet UTH-enheten The choice of rubber material for use in sealings and hoses in the fuel system is of great importance. If a wrong type of rubber is used, premature failure during service Besöksadress: may occur. This impacts the environmental performance, the safety during driving, Ångströmlaboratoriet uptime and economy of the transport. In this diploma work, rubbers for use in sealing Lägerhyddsvägen 1 Hus 4, Plan 0 and hoses in the fuel system have been evaluated to assess which materials have the potential to be used under long-term use in contact with commercial fuels. Postadress: Box 536 Three commercial fuel hoses, nitrile rubber (NBR), hydrogenated nitrile rubber 751 21 Uppsala (HNBR), ethylene-acrylic rubber (AEM) and fluorocarbon rubber (FKM) of varying Telefon: types and compositions have been evaluated in diesel with 7% RME (rapeseed methyl 018 – 471 30 03 ester), 100% biodiesel of RME and ethanol fuel. Tests were performed by immersing the materials in fuel and measure the compression set and changes in properties like Telefax: volume, hardness, tensile strength and elongation at break. 018 – 471 30 00 Hemsida: The results showed that one NBR material, one AEM and all FKM are potential http://www.teknat.uu.se/student materials for long term use in diesel with 7% RME. All types of NBR and two types of FKM (terpolymers, peroxide cured) may be used in ethanol fuel. NBR and HNBR were the only rubbers evaluated in biodiesel. NBR and HNBR with an ACN content of ~30% might be used in 100% RME at lower temperatures for shorter periods. The aging resistance in air was good for HNBR, AEM and FKM but poor for NBR. Handledare: Maria Conde Ämnesgranskare: Jöns Hilborn Examinator: Karin Larsson ISSN: 1650-8297, UPTEC K 13012 Sponsor: Scania CV AB Svensk sammanfattning (Swedish summary) I lastbilens och bussens bränslesystem finns det packningar, tätningar och slangar av gummimaterial. Gummi är ett material som består av så kallade polymerer, d.v.s. långa kedjor mer repeterande enheter, som är sammanbundna till varandra i vissa gemensamma punkter. Typ av polymer som används, men också andra tillsatser i gummit, påverkar gummits egenskaper. Vissa typer lämpar sig bättre när det är kallt, andra när det är mycket varmt. En del klarar av att användas i kontakt med kemikalier medans andra bryts ned. I bränslesystemet kommer gummit i kontakt med bränsle vilket gör att det är viktigt att det gummit man använder klarar av att användas i bränslet. Ett felaktigt materialval kan innebära att komponenten drabbas av förtidigt mekaniskt brott vilket medför en säkerhetsrisk och innebär att fordonet inte kan köras lika länge som tänkt, vilket också påverkar ekonomin. I takt med att koldioxidutsläppen ökar och tillgången på olja minskar, utvecklas nya bränslealternativ till diesel. Två sådana alternativ är biodiesel och etanol. Biodiesel utvinns från växtolja och fett medans etanol kan utvinnas ur socker, stärkelse och cellulosa från växter. Att byta från ett bränsle till ett annat innebär dock problem när det kommer till materialval. Skillnader i kemisk sammansättning hos de olika bränslena gör att gummit påverkas olika beroende på bränsle. I det här examensarbetet har tester av ett antal gummi utförts i olika sorters bränsle för att göra en bedömning av vilka sorters gummi lämpar sig för användning under lång tid i tunga fordon. Det har gjorts genom att sänka ner prover i olika bränslen vid förhöjda temperaturer. En förhöjd temperatur gör att kemiska reaktioner, såsom åldring och absorption av media, går snabbare, vilket gör att man på några veckor vid en hög temperatur kan uppskatta bränslets påverkan under en lång tid vid lägre temperatur. Eftersom att gummikomponenterna även utsätts för luft i verkligheten, har även exponeringar i luft vid förhöjd temperatur utförts. De exponerade materialen har utvärderats med avseende på volymsvällning, ändring i hårdhet och mekaniska egenskaper samt sättning. Det sistnämnda är en mycket relevant egenskap för att bedöma risken för läckage. Resultaten visar att typ av gummi påverkar och att vissa gummityper lämpar sig bättre än andra i olika bränslen. Fluorgummi visade sig till exempel fungera bra i både diesel med 7 % biodiesel och etanolbränsle. Även luft hade smärre inverkan på dessa material. Nitrilgummimaterialen uppvisade stora skillnader i diesel med 7 % biodiesel, beroende på sammansättning. Alla sorters nitrilgummi klarade sig däremot bra i etanolbränsle, men dåligt i luft. En specialvariant av nitrilgummi kan också komma att användas i diesel med 7 % biodiesel. En typ av etenakrylgummi svällde mycket i etanolbränsle, men klarar i övrigt av både varm luft och diesel med inblandning av 7 % biodiesel. I Acknowledgments I would like to thank all the people at Scania that have helped me during my diploma work, especially my supervisor Maria Conde for great support during the whole process. I would also like to thank Martin Bellander for good advice and Christian Sjöstedt for help in the lab and for good music during lab sessions. Thank you Jenny Johansson and Karin Agrenius, at SP Technical Research Institute of Sweden, for help during the project and for letting me visit you in Borås. Thank you Erica Forslund at Trelleborg Ersmark AB for providing the samples and for technical support. Great thanks to the whole team at UTMC, Materials Technology at Scania, you have all been very kind and helpful. Finally I would like to thank my friends and family for supporting me. Emmy Selldén II Contents Svensk sammanfattning ................................................................................................................................. I Acknowledgments .......................................................................................................................................... II Acronyms and glossary of rubbers ........................................................................................................... V 1 Introduction .............................................................................................................................................. 1 1.1 Background ...................................................................................................................................... 1 1.2 Aim and goals .................................................................................................................................. 2 2 Theory ......................................................................................................................................................... 3 2.1 Rubber materials ............................................................................................................................ 3 2.1.1 Description of some elastomers used in rubber ....................................................... 3 2.1.2 Additives ................................................................................................................................... 7 2.2 Fuels .................................................................................................................................................... 8 2.3 Degradation of rubber and interaction with fluids ........................................................ 10 2.4 Accelerated tests ......................................................................................................................... 12 2.4.1 Arrhenius equation ............................................................................................................ 12 2.4.2 Fluid resistance tests ........................................................................................................ 13 2.5 Previous research ....................................................................................................................... 14 3 Methods ................................................................................................................................................... 16 3.1 Rubber components analyzed ................................................................................................ 16 3.2 Fuels used ...................................................................................................................................... 18 3.3 Choice of time and temperature for exposures ............................................................... 18 3.4 Sample preparation .................................................................................................................... 19 3.5 Aging in air and exposure in fuels ........................................................................................ 19 3.6 Analysis of samples .................................................................................................................... 21 3.6.1 Volume change .................................................................................................................... 21 3.6.2 Change in hardness ............................................................................................................ 22 3.6.3 Tensile testing ..................................................................................................................... 23 3.6.4 Compression set ................................................................................................................. 24 3.6.5 FTIR ......................................................................................................................................... 25 4 Results and discussion ....................................................................................................................... 27 4.1 Visual observations .................................................................................................................... 28 4.2 FTIR analysis ................................................................................................................................. 30 4.3 NBR materials ............................................................................................................................... 34 III 4.4 HNBR materials ........................................................................................................................... 38 4.5 AEM materials .............................................................................................................................. 41 4.6 FKM materials .............................................................................................................................. 44 4.7 Hoses ................................................................................................................................................ 48 4.8 Comparison between polymer types .................................................................................. 51 4.9 Testing in B100 ............................................................................................................................ 52 4.10 Reflections ..................................................................................................................................... 52 5 Conclusions ............................................................................................................................................ 53 6 Further work ......................................................................................................................................... 54 7 References .............................................................................................................................................. 55 Appendix A: FTIR spectra .......................................................................................................................... 58 Appendix B: Color graded tables for properties after fuel exposure and aging in air ....... 94 Appendix C: Bar charts for hoses ........................................................................................................... 98 IV Acronyms and glossary of rubbers Nomenclature of rubbers according to Swedish standard SS-ISO 1629 ACN Acrylonitrile AEM Copolymer of ethyl acrylate (or other acrylates) and ethylene. Ethylene-acrylic rubber AR Aramid Reinforcement ASTM American Society for Testing of Materials ATR Attenuated Total Reflectance B100 100% biodiesel B7 Diesel with 7% RME CO Polychloromethyloxirane. Epichlorohydrin rubber. CPE Chlorinated Polyethylene Rubber CR Chloroprene Rubber CS Compression set DLO Diffusion Limited Oxidation ECO Copolymer of ethylene oxide and chloromethyloxirane. Known as epichlorohydrin copolymer or rubber ED95 Ethanol fuel of 95% ethanol and 5% additives FAME Fatty Acid Methyl Esters FKM Fluoro rubber having substituent fluoro, perfluoroalkyl or perfluoroalkoxy groups on the polymer chain FPM Same as FKM FTIR Fourier Transform Infrared Spectroscopy GECO Terpolymer of epichlorohydrin-ethylene oxide-allyl glycidyl ether HNBR Hydrogenated acrylonitrile-butadiene rubber IRHD International Rubber Hardness Degree NBR Acrylonitrile-butadiene rubber, known as nitrile rubber PVC Poly Vinyl Chloride RME Rapeseed Methyl Ester SIS Swedish standards institute SS Swedish Standard V 1 Introduction This diploma work has been performed at Scania CV AB, a manufacturer of heavy trucks, buses and industrial and marine engines. Material selection is an important part when developing new components. In this part, a background to the use of rubber components in contact with fuel will be given, followed by aim and goals for the project. 1.1 Background The main applications of rubber materials in heavy vehicles are in components for sealing, vibration damping, fluid transportation and in interior details. In particular, tightness of seals and hoses for fluid transport are of great importance for the environmental performance, the driving safety, uptime and economy of the transport. Fuel hoses are used in several parts of the fuel system in low and medium pressure applications. They are used in the tank area in the fuel filler system and in the engine as feed hoses to direct the fuel towards the fuel injector. Rubber hoses are also used to connect the tank and engine compartment and consist of feed hoses that transport fuel to the engine and as return hoses that transport unreacted fuel back to the tank. Fuel hoses consist typically of several layers of materials. The inner rubber layer is in direct contact with the fuel. Behind the inner layer, reinforcement is used. Depending on temperature it can, for example, be polyester, cotton or aramid. Outermost is an external rubber layer that faces the outer environment and it should be able to resist weather, fuel, high external temperature, ozone, coolant, vibrations etc. Depending on the materials used for the inner and outer layer, an intermediate layer might be used. The intermediate layer gives less permeation and gives better adhesion between the layers and the reinforcement [1]. Sealings are used to prevent leakage and exclude contaminants. Several materials can be used like metal and rubber. Rubber has low hardness which allows for lower sealing pressures and it has elasticity making it possible to maintain the pressure [2]. Rubber is therefore common in sealings and gaskets. Many types of sealings and gaskets are available on the market. Commonly used are radial, axial and O-ring sealings. Radial sealings consist of several components, where one is a gasket cuff made of rubber. It is used to prevent the transportation of fluid between two parts where, for example, one part is stationary and the other is rotating. Axial sealings are commonly used to exclude external contamination. O-rings are circular sealings used for both radial and axial sealing. The O-ring is placed in a groove between two parts. When subjected to a load, it deforms and seals [2]. One example of an important gasket is the cylinder head gasket between the engine block and the cylinder heads in the engine. This gasket comes in contact with oil, unreacted fuel and degraded fuel. The temperature in the fuel system varies and there are areas that are colder and warmer. For example, the fuel transport for injection in the engine transports cold fuel 1 and the temperature is rarely over 60⁰C. For transportation of unreacted fuel, the temperature is higher. To reduce repair cost and to ensure safety it is wished that rubber articles have a life- time close to the truck life. To estimate how good rubber components will perform in fuel, accelerated tests are commonly performed according to Swedish standard SS-ISO 1817 or American standard ASTM D471, these tests are normally short, for example 70h [3]. There is a need to perform these tests at longer times, about 1000h, in real fuels to better estimate how good different rubber components will perform during long time in service. In this diploma work, three fuel hoses and thirteen rubbers will be examined in air and some in commercial fuels. The rubber components are three types of nitrile rubber (NBR), two types of hydrogenated nitrile rubber (HNBR), four types of ethylene-acrylic rubber (AEM) and four types of fluorocarbon rubber (FKM). NBR and HNBR are used in lower temperature applications while AEM and FKM are used at higher temperatures. 1.2 Aim and goals This study aims to obtain relevant data to predict the long-term properties of rubber components used in applications in commercial fuels such as diesel with 7% RME (rapeseed methyl ester), biodiesel and ethanol fuel. This information will help to give safer recommendations on the life assessment of different rubber materials in fuels. The questions to be answered are: Which of the chosen rubber materials have the potential to be used in fuel applications, for long-term use, in commercial fuels like diesel with 7% RME, biodiesel and ethanol fuel? How does polymer type and differences in composition of the different rubber components impact on aging and fuel resistance? 2
Description: