ebook img

Lie Theory and Its Applications in Physics: Varna, Bulgaria, June 2013 PDF

554 Pages·2014·6.342 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lie Theory and Its Applications in Physics: Varna, Bulgaria, June 2013

Springer Proceedings in Mathematics & Statistics Vladimir Dobrev E ditor Lie Theory and Its Applications in Physics Varna, Bulgaria, June 2013 Springer Proceedings in Mathematics & Statistics Volume 111 Moreinformationaboutthisseriesathttp://www.springer.com/series/10533 Springer Proceedings in Mathematics & Statistics Thisbookseriesfeaturesvolumescomposedofselectcontributionsfromworkshops and conferences in all areas of current research in mathematics and statistics, includingoperationresearchandoptimization.Inadditiontoanoverallevaluation of the interest, scientific quality, and timeliness of each proposal at the hands of thepublisher,individualcontributionsareallrefereedtothehighqualitystandards of leading journals in the field. Thus, this series provides the research community with well-edited, authoritative reports on developments in the most exciting areas ofmathematicalandstatisticalresearchtoday. Vladimir Dobrev Editor Lie Theory and Its Applications in Physics Varna, Bulgaria, June 2013 123 Editor VladimirDobrev InstituteforNuclearResearch andNuclearEnergy BulgarianAcademyofSciences 72TsarigradskoChaussee Sofia,Bulgaria ISSN2194-1009 ISSN2194-1017(electronic) ISBN978-4-431-55284-0 ISBN978-4-431-55285-7(eBook) DOI10.1007/978-4-431-55285-7 SpringerTokyoHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2014958024 ©SpringerJapan2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface The Workshop series ‘Lie Theory and Its Applications in Physics’ is designed to serve the community of theoretical physicists, mathematical physicists and mathematicians working on mathematical models for physical systems based on geometricalmethodsandinthefieldofLietheory. The series reflects the trend towards a geometrisation of the mathematical description of physical systems and objects. A geometric approach to a system yieldsingeneralsomenotionofsymmetrywhichisveryhelpfulinunderstanding its structure. Geometrisation and symmetries are meant in their widest sense, i.e., representation theory, algebraic geometry, infinite-dimensional Lie algebras and groups, superalgebras and supergroups, groups and quantum groups, noncom- mutative geometry, symmetries of linear and nonlinear PDE, special functions. Furthermore we include the necessary tools from functional analysis and number theory.Thisisabiginterdisciplinaryandinterrelatedfield. The first three workshops were organised in Clausthal (1995, 1997, 1999), the 4thwaspartofthe2ndSymposium‘QuantumTheoryandSymmetries’inCracow (2001),the5th,7th,8thand9thwereorganisedinVarna(2003,2007,2009,2011), the6thwaspartofthe4thSymposium‘QuantumTheoryandSymmetries’inVarna (2005),buthasitsownvolumeofProceedings. The 10th Workshop of the series (LT-10) was organized by the Institute of NuclearResearchandNuclearEnergyoftheBulgarianAcademyofSciences(BAS) inJune2013(17–23),attheGuestHouseofBASnearVarnaontheBulgarianBlack SeaCoast. Theoverallnumberofparticipantswas71andtheycamefrom21countries. The scientific level was very high as can be judged by the speakers. The plenary speakers were: Loriano Bonora (Trieste), Branko Dragovich (Belgrade), Ludvig Faddeev (St. Petersburg), Malte Henkel (Nancy), Evgeny Ivanov (Dubna), Toshiyuki Kobayashi (Tokyo), Ivan Kostov (Saclay), Karl-Hermann Neeb (Erlan- gen), Eric Ragoucy (Annecy), Ivan Todorov (Sofia), Joris Van Der Jeugt (Ghent), GeorgeZoupanos(Athens). The topics covered the most modern trends in the field of the Workshop: Symmetries in String Theories and Gravity Theories, Conformal Field Theory, v vi Preface Integrable Systems, Representation Theory, Supersymmetry, Quantum Groups, VertexAlgebrasandSuperalgebras,QuantumComputing. There is some similarity with the topics of preceding workshops, however, the comparison shows how certain topics evolve and that new structures were found andused.Forthepresentworkshopwementionmoreemphasison:representation theory, quantum groups, integrable systems, vertex algebras and superalgebras, on conformal field theories, applications to the minimal supersymmetric standard model. The International Organizing Committee was: V.K. Dobrev (Sofia) and H.-D. Doebner(Clausthal)incollaborationwithG.Rudolph(Leipzig). The Local Organizing Committee was: V.K. Dobrev (Chairman), V.I. Doseva, A.Ch. Ganchev, S.G. Mihov, D.T. Nedanovski, T.V. Popov, T.P. Stefanova, M.N. Stoilov,N.I.Stoilova,S.T.Stoimenov. Acknowledgments Weexpressourgratitudetothe – InstituteofNuclearResearchandNuclearEnergy – AbdusSalamInternationalCentreforTheoreticalPhysics for financial help. We thank the Bulgarian Academy of Sciences for providing its Guest House which contributed very much to the stimulating and pleasant atmo- sphere during the Workshop. We thank the Publisher, Springer Japan, represented byMs.ChinoHasebe(ExecutiveEditorinMathematics,Statistics,Business,Eco- nomics, Computer Science) and Mr. Masayuki Nakamura (Editorial Department), forassistanceinthepublication.Last,butnotleast,IthankthemembersoftheLocal OrganizingCommitteewho,throughtheirefforts,madetheworkshoprunsmoothly andefficiently. Sofia,Bulgaria VladimirDobrev May2014 Contents PartI PlenaryTalks RevisitingTraceAnomaliesinChiralTheories............................... 3 LorianoBonora,StefanoGiaccari,andBrunoLimaDeSouza CompleteT-DualizationofaStringinaWeaklyCurvedBackground..... 13 Lj.Davidovic´,B.Nikolic´,andB.Sazdovic´ ModularDoubleoftheQuantumGroupSL (2,R)........................... 21 q L.D.Faddeev Physical Ageing and New Representations of Some LieAlgebrasofLocalScale-Invariance........................................ 33 MalteHenkelandStoimenStoimenov NewTypeofN D4SupersymmetricMechanics ............................ 51 EvgenyIvanovandStepanSidorov Vector-Valued Covariant Differential Operators fortheMöbiusTransformation................................................. 67 ToshiyukiKobayashi,ToshihisaKubo,andMichaelPevzner Semi-classicalScalarProductsintheGeneralisedSU(2)Model............ 87 IvanKostov WeakPoissonStructuresonInfiniteDimensionalManifolds andHamiltonianActions........................................................ 105 K.-H.Neeb,H.Sahlmann,andT.Thiemann BetheVectorsofgl(3)-InvariantIntegrableModels, TheirScalarProductsandFormFactors ..................................... 137 EricRagoucy vii viii Contents PolylogarithmsandMultizetaValuesinMasslessFeynmanAmplitudes.. 155 IvanTodorov Reduction of Couplings in Quantum Field Theories withApplicationsinFiniteTheoriesandtheMSSM......................... 177 S.Heinemeyer,M.Mondragón,N.Tracas,andG.Zoupanos PartII StringTheoriesandGravityTheories ASUSYDouble-WellMatrixModelas2DTypeIIASuperstring.......... 199 FumihikoSugino f.R/-Gravity:“EinsteinFrame”LagrangianFormulation, Non-standardBlackHolesandQCD-LikeConfinement/Deconfinement.. 211 E.Guendelman,A.Kaganovich,E.Nissimov,andS.Pacheva TheD-BraneChargesofC /Z ................................................. 223 3 2 ElaineBeltaos OnRobertsonWalkerSolutionsinNoncommutativeGaugeGravity...... 231 SimonaBabeti SomePower-LawCosmologicalSolutionsinNonlocal ModifiedGravity................................................................. 241 Ivan Dimitrijevic, Branko Dragovich, Jelena Grujic, andZoranRakic OnNonlocalModifiedGravityandCosmology............................... 251 BrankoDragovich PartIII IntegrableSystems VertexOperatorApproachtoSemi-infiniteSpinChain: RecentProgress .................................................................. 265 TakeoKojima ThermopowerintheCoulombBlockadeRegimeforLaughlin QuantumDots.................................................................... 279 LachezarS.Georgiev OnaPairofDifferenceEquationsforthe F TypeOrthogonal 4 3 PolynomialsandRelatedExactly-SolvableQuantumSystems ............. 291 E.I.Jafarov,N.I.Stoilova,andJ.VanderJeugt SpinChainModelsofFreeFermions.......................................... 301 Cˇ.Burdík,A.P.Isaev,S.O.Krivonos,andO.Navrátil Group Analysis of Generalized Fifth-Order Korteweg–de VriesEquationswithTime-DependentCoefficients.......................... 311 OksanaKuriksha,SeverinPošta,andOlenaVaneeva Contents ix A Construction of Generalized Lotka–Volterra Systems Connectedwithsl (C) ........................................................... 323 n S.A.Charalambides,P.A.Damianou,andC.A.Evripidou Systems of First-Order Ordinary Differential Equations InvariantwithRespecttoLinearRealizations ofTwo-andThree-DimensionalLieAlgebras................................ 331 OksanaKuriksha PartIV SupersymmetryandQuantumGroups OnPrincipalFiniteW-AlgebrasforCertainOrthosymplectic LieSuperalgebrasandF(4)..................................................... 343 ElenaPoletaeva Super-deSitterandAlternativeSuper-PoincaréSymmetries............... 357 V.N.Tolstoy Localizations of U (sl(2)) and U (osp(1j2)) Associated q q withEuclideanandSuperEuclideanAlgebras............................... 369 PatrickMoylan Onthe2DZeroModes’AlgebraoftheSU(n)WZNWModel.............. 381 LudmilHadjiivanovandPaoloFurlan PartV ConformalFieldTheories Breakingso(4)SymmetryWithoutDegeneracyLift......................... 395 M.Kirchbach,A.PallaresRivera,andF.deJ.RosalesAldape OntheRelationBetweenanN D1SupersymmetricLiouville FieldTheoryandaPairofNon-SUSYLiouvilleFields...................... 405 LeszekHadaszandZbigniewJaskólski Multi-Point Virtual Structure Constants and Mirror ComputationofCP2-Model..................................................... 415 MasaoJinzenji N-ConformalGalileanGroupasaMaximalSymmetryGroup ofHigher-DerivativeFreeTheory.............................................. 425 KrzysztofAndrzejewskiandJoannaGonera PartVI VertexAlgebrasandSuperalgebras Virasoro Structures in the Twisted Vertex Algebra oftheParticleCorrespondenceofTypeC..................................... 435 IanaI.Anguelova

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.