ebook img

Lie Models in Topology PDF

302 Pages·2021·3.969 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lie Models in Topology

Progress in Mathematics 335 Urtzi Buijs Yves Félix Aniceto Murillo Daniel Tanré Lie Models in Topology Progress in Mathematics Volume 335 SeriesEditors Antoine Chambert-Loir, Université Paris-Diderot, Paris, France Jiang-Hua Lu, The University of Hong Kong, Hong Kong SAR, China Michael Ruzhansky, Ghent University, Belgium and Queen Mary University of London, UK Yuri Tschinkel, Courant Institute of Mathematical Sciences, New York, USA Moreinformationaboutthisseriesathttp://www.springer.com/series/4848 Urtzi Buijs • Yves Félix • Aniceto Murillo Daniel Tanré Lie Models in Topology Urtzi Buijs Yves Félix Departamento de Álgebra, Institut de Recherche in Mathématique Geometría y Topología et Physique Universidad de Málaga Louvain-la-Neuve, Belgium Málaga, Spain Daniel Tanré Aniceto Murillo Département de Mathématiques Departamento de Álgebra, Université de Lille Geometría y Topología Villeneuve d’Ascq, France Universidad de Málaga Málaga, Spain ISSN 0743-1643 ISSN 2296-505X (electronic) Progress in Mathematics ISBN 978-3-030-54429-4 ISBN 978-3-030-54430-0 (eBook) https://doi.org/10.1007/978-3-030-54430-0 Mathematics Subject Classification (2020): 55P62, 17B70, 17B55, 18N40, 18N50 © Springer Nature Switzerland AG 2020 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This book is published under the imprint Birkhäuser, www.birkhauser-science.com by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Ferran Sunyer i Balaguer (1912{1967) was a self- taught Catalan mathematician who, in spite of a seriousphysicaldisability,wasveryactiveinresearch in classical mathematical analysis, an area in which he acquired international recognition. His heirs cre- ated the Fundaci(cid:19)o Ferran Sunyer i Balaguer inside theInstitutd’EstudisCatalanstohonorthememory of Ferran Sunyer i Balaguer and to promote mathe- matical research. Each year, the Fundaci(cid:19)o Ferran Sunyer i Balaguer and the Institut d’Estudis Catalans award an in- ternational research prize for a mathematical mono- graphofexpositorynature.Theprize-winningmono- graphsarepublishedinthisseries.Detailsaboutthe prizeandtheFundaci(cid:19)oFerranSunyeriBalaguercan be found at https://ffsb.espais.iec.cat/en/ the-ferran-sunyer-i-balaguer-prize/ This book has been awarded the Ferran Sunyer i Balaguer 2020 prize. The members of the scienti(cid:12)c commitee of the 2020 prize were: Antoine Chambert-Loir Universit(cid:19)e Paris-Diderot (Paris 7) Tere M-Seara Universitat Polit(cid:19)ecnica de Catalunya Joan Porti Universitat Aut(cid:18)onoma de Barcelona Michael Ruzhansky Imperial College London Kristian Seip Norwegian University of Science and Technology Ferran Sunyer i Balaguer Prize winners since 2009 2009 Timothy D. Browning Quantitative Arithmetic of Projective Varieties, PM 277 2010 Carlo Mantegazza Lecture Notes on Mean Curvature Flow, PM 290 2011 Jayce Getz and Mark Goresky Hilbert Modular Forms with Coe(cid:14)cients in Intersection Homology and Quadratic Base Change, PM 298 2012 Angel Cano, Juan Pablo Navarrete and Jos(cid:19)e Seade Complex Kleinian Groups, PM 303 2013 Xavier Tolsa Analytic capacity, the Cauchy transform, and non-homogeneous Calder(cid:19)on{Zygmund theory, PM 307 2014 Veronique Fischer and Michael Ruzhansky Quantization on Nilpotent Lie Groups, Open Access, PM 314 2015 The scienti(cid:12)c committee decided not to award the prize 2016 Vladimir Turaev and Alexis Virelizier Monoidal Categories and Topological Field Theory, PM 322 2017 Antoine Chambert-Loir, Johannses Nicaise and Julien Sebag Motivic Integration, PM 325 2018 Michael Ruzhansky and Durvudkhan Suragan Hardy Inequalities on Homogeneous Groups, PM 327 2019 The scienti(cid:12)c committee decided not to award the prize Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 Background 1.1 Simplicial categories . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.1.1 Simplicial sets . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.1.2 Simplicial complexes . . . . . . . . . . . . . . . . . . . . . . 21 1.1.3 Simplicial chains . . . . . . . . . . . . . . . . . . . . . . . . 22 1.2 Differential categories . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.2.1 Commutative differential graded algebras and the Sullivan model of a space . . . . . . . . . . . . . . . . . 26 1.2.2 Differential graded Lie algebras and the Quillen model of a space . . . . . . . . . . . . . . . . . 31 1.2.3 Differential graded coalgebras . . . . . . . . . . . . . . . . . 34 1.2.4 Differential graded Lie coalgebras . . . . . . . . . . . . . . . 37 1.2.5 A∞-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1.3 Model categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 1.3.1 Differential model categories . . . . . . . . . . . . . . . . . 48 1.3.2 Cofibrantly generated model categories. . . . . . . . . . . . 50 2 The Quillen Functors L, C and their Duals A, E 2.1 The functors L and C . . . . . . . . . . . . . . . . . . . . . . . . 54 2.2 The functors A and E . . . . . . . . . . . . . . . . . . . . . . . . . 61 3 Complete Differential Graded Lie Algebras 3.1 Complete differential graded Lie algebras . . . . . . . . . . . . . . 72 3.2 The completion of free Lie algebras . . . . . . . . . . . . . . . . . 76 3.3 Completion vs profinite completion. . . . . . . . . . . . . . . . . . 86 4 Maurer–Cartan Elements and the Deligne Groupoid 4.1 Maurer–Cartanelements . . . . . . . . . . . . . . . . . . . . . . . 94 4.2 Exponential automorphisms and the Baker–Campbell–Hausdorffproduct . . . . . . . . . . . . . . . 96 4.3 The gauge action and the Deligne groupoid . . . . . . . . . . . . . 100 vii viii Contents 4.4 Applications to deformation theory. . . . . . . . . . . . . . . . . . 107 4.5 The Goldman–Millson Theorem . . . . . . . . . . . . . . . . . . . 109 5 The Lawrence–Sullivan Interval 5.1 Introducing the Lawrence–Sullivaninterval . . . . . . . . . . . . . 118 5.2 The LS interval as a cylinder . . . . . . . . . . . . . . . . . . . . . 121 5.3 The flow of a differential equation, the gauge action and the LS interval . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.4 Subdivision of the LS interval and a model of the triangle . . . . . 125 5.5 Paths in a cdgl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6 The Cosimplicial cdgl L• 6.1 The main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6.2 Inductive sequences of models of the standard simplices . . . . . . 134 6.3 Sequences of equivariant models of the standard simplices . . . . . 144 6.4 The cosimplicial cdgl L• . . . . . . . . . . . . . . . . . . . . . . . . 147 6.5 An explicit model for the tetrahedron . . . . . . . . . . . . . . . . 148 6.6 Symmetric MC elements of simplicial complexes . . . . . . . . . . 152 7 The Model and Realization Functors 7.1 Introducing the global model and realization functors. Adjointness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 7.2 First features of the global model and realization functors . . . . . 163 7.3 The path components and homotopy groups of (cid:2)L(cid:3) . . . . . . . . . 167 7.4 Homologicalbehaviour of L . . . . . . . . . . . . . . . . . . . . . 172 X 7.5 The Deligne groupoid of the global model . . . . . . . . . . . . . . 177 8 A Model Category for cdgl 8.1 The model category . . . . . . . . . . . . . . . . . . . . . . . . . . 184 8.2 Weak equivalences and free extensions . . . . . . . . . . . . . . . . 189 8.3 A path object, a cylinder object and homotopy of morphisms . . . 193 8.4 Minimal models of simplicial sets . . . . . . . . . . . . . . . . . . . 199 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 9 The Global Model Functor via Homotopy Transfer • 9.1 The Dupont calculus on A (Δ ) . . . . . . . . . . . . . . . . . . 204 PL 9.2 Obtaining L• and LX by transfer. . . . . . . . . . . . . . . . . . . 208 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Contents ix 10 Extracting the Sullivan, Quillen and Neisendorfer Models from the Global Model 10.1 Connecting the global model with the Sullivan, Quillen and Neisendorfer models. . . . . . . . . . . . . . . . . . . . . . . . 214 10.2 From the Lie minimal model to the Sullivan model and vice versa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 10.3 Coformal spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 11 The Deligne–Getzler–HinichFunctor MC(cid:129) and Equivalence of Realizations 11.1 The set of Maurer–Cartanelements as a set of morphisms . . . . . 224 • 11.2 Simplicial contractions of A (Δ ) . . . . . . . . . . . . . . . . . . 228 PL 11.3 The Deligne–Getzler–Hinich ∞-groupoid . . . . . . . . . . . . . . 231 11.4 Equivalence of realizations and Bousfield–Kan completion . . . . . 237 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 12 Examples 12.1 Lie models of 2-dimensional complexes. Surfaces . . . . . . . . . . 245 12.2 Lie models of tori and classifying spaces of right-angled Artin groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 12.3 Lie model of a product . . . . . . . . . . . . . . . . . . . . . . . . 255 12.4 Mapping spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 12.4.1 Lie models of mapping spaces . . . . . . . . . . . . . . . . . 263 12.4.2 Lie models of pointed mapping spaces . . . . . . . . . . . . 266 12.4.3 Lie models of free loop spaces . . . . . . . . . . . . . . . . . 267 12.4.4 Simplicial enrichment of cdgl and cdga . . . . . . . . . . . 269 12.4.5 Complexes of derivations and homotopy groups of mapping spaces . . . . . . . . . . . . . . . . . . . . . . . 271 12.5 Homotopy invariants of the realization functor . . . . . . . . . . . 275 12.5.1 Action of π1(cid:2)L(cid:3) on π∗(cid:2)L(cid:3) . . . . . . . . . . . . . . . . . . . 276 12.5.2 The rational homotopy Lie algebra of (cid:2)L(cid:3) . . . . . . . . . . 278 12.5.3 Postnikov decomposition of (cid:2)L(cid:3) . . . . . . . . . . . . . . . . 280 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 Notation Index General notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.