ebook img

Lie Groups, Lie Algebras, and Representations: An Elementary Introduction PDF

452 Pages·2015·6.64 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lie Groups, Lie Algebras, and Representations: An Elementary Introduction

Graduate Texts in Mathematics Brian Hall Lie Groups, Lie Algebras, and Representations An Elementary Introduction Second Edition Graduate Texts in Mathematics 222 Graduate Texts in Mathematics SeriesEditors: SheldonAxler SanFranciscoStateUniversity,SanFrancisco,CA,USA KennethRibet UniversityofCalifornia,Berkeley,CA,USA AdvisoryBoard: AlejandroAdem,UniversityofBritishColumbia DavidJerison,UniversityofCaliforniaBerkeley&MSRI IreneM.Gamba,TheUniversityofTexasatAustin JeffreyC.Lagarias,UniversityofMichigan KenOno,EmoryUniversity JeremyQuastel,UniversityofToronto FadilSantosa,UniversityofMinnesota BarrySimon,CaliforniaInstituteofTechnology Graduate Texts in Mathematics bridge the gap between passive study and creative understanding, offering graduate-level introductions to advanced topics in mathematics. The volumes are carefully written as teaching aids and highlight characteristic features of the theory. Although these books are frequently used as textbooksingraduatecourses,theyarealsosuitableforindividualstudy. Moreinformationaboutthisseriesathttp://www.springer.com/series/136 Brian Hall Lie Groups, Lie Algebras, and Representations An Elementary Introduction Second Edition 123 BrianHall DepartmentofMathematics UniversityofNotreDame NotreDame,IN,USA ISSN0072-5285 ISSN2197-5612 (electronic) GraduateTextsinMathematics ISBN978-3-319-13466-6 ISBN978-3-319-13467-3 (eBook) DOI10.1007/978-3-319-13467-3 LibraryofCongressControlNumber:2015935277 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2003,2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternational PublishingAGSwitzerlandispartofSpringerScience+Business Media(www. springer.com) ForCarla Contents PartI GeneralTheory 1 MatrixLieGroups.......................................................... 3 1.1 Definitions............................................................ 3 1.2 Examples ............................................................. 5 1.3 TopologicalProperties ............................................... 16 1.4 Homomorphisms..................................................... 21 1.5 LieGroups............................................................ 25 1.6 Exercises.............................................................. 26 2 TheMatrixExponential ................................................... 31 2.1 TheExponentialofaMatrix......................................... 31 2.2 ComputingtheExponential.......................................... 34 2.3 TheMatrixLogarithm ............................................... 36 2.4 FurtherPropertiesoftheExponential............................... 40 2.5 ThePolarDecomposition............................................ 42 2.6 Exercises.............................................................. 46 3 LieAlgebras................................................................. 49 3.1 DefinitionsandFirstExamples...................................... 49 3.2 Simple,Solvable,andNilpotentLieAlgebras...................... 53 3.3 TheLieAlgebraofaMatrixLieGroup............................. 55 3.4 Examples ............................................................. 57 3.5 LieGroupandLieAlgebraHomomorphisms...................... 60 3.6 TheComplexificationofaRealLieAlgebra ....................... 65 3.7 TheExponentialMap ................................................ 67 3.8 ConsequencesofTheorem3.42 ..................................... 70 3.9 Exercises.............................................................. 73 4 BasicRepresentationTheory.............................................. 77 4.1 Representations....................................................... 77 4.2 ExamplesofRepresentations........................................ 81 4.3 NewRepresentationsfromOld...................................... 84 vii viii Contents 4.4 CompleteReducibility............................................... 90 4.5 Schur’sLemma....................................................... 94 4.6 Representationsofsl.2IC/ .......................................... 96 4.7 GroupVersusLieAlgebraRepresentations......................... 101 4.8 ANonmatrixLieGroup.............................................. 103 4.9 Exercises.............................................................. 105 5 TheBaker–Campbell–HausdorffFormulaandItsConsequences.... 109 5.1 The“Hard”Questions................................................ 109 5.2 AnIllustrativeExample.............................................. 110 5.3 TheBaker–Campbell–HausdorffFormula.......................... 113 5.4 TheDerivativeoftheExponentialMap............................. 114 5.5 ProofoftheBCHFormula........................................... 117 5.6 TheSeriesFormoftheBCHFormula .............................. 118 5.7 GroupVersusLieAlgebraHomomorphisms....................... 119 5.8 UniversalCovers ..................................................... 126 5.9 SubgroupsandSubalgebras.......................................... 128 5.10 Lie’sThirdTheorem ................................................. 135 5.11 Exercises.............................................................. 135 PartII SemisimpleLieAlgebras 6 TheRepresentationsofsl.3IC/........................................... 141 6.1 Preliminaries.......................................................... 141 6.2 WeightsandRoots ................................................... 142 6.3 TheTheoremoftheHighestWeight ................................ 146 6.4 ProofoftheTheorem ................................................ 148 6.5 AnExample:HighestWeight.1;1/................................. 153 6.6 TheWeylGroup...................................................... 154 6.7 WeightDiagrams..................................................... 158 6.8 FurtherPropertiesoftheRepresentations........................... 159 6.9 Exercises.............................................................. 165 7 SemisimpleLieAlgebras................................................... 169 7.1 SemisimpleandReductiveLieAlgebras............................ 169 7.2 CartanSubalgebras................................................... 174 7.3 RootsandRootSpaces............................................... 176 7.4 TheWeylGroup...................................................... 182 7.5 RootSystems......................................................... 183 7.6 SimpleLieAlgebras ................................................. 185 7.7 TheRootSystemsoftheClassicalLieAlgebras................... 188 7.8 Exercises.............................................................. 193 8 RootSystems................................................................ 197 8.1 AbstractRootSystems............................................... 197 8.2 ExamplesinRankTwo............................................... 201 8.3 Duality................................................................ 204 Contents ix 8.4 BasesandWeylChambers........................................... 206 8.5 WeylChambersandtheWeylGroup................................ 212 8.6 DynkinDiagrams..................................................... 216 8.7 IntegralandDominantIntegralElements........................... 218 8.8 ThePartialOrdering ................................................. 221 8.9 ExamplesinRankThree............................................. 228 8.10 TheClassicalRootSystems ......................................... 232 8.11 TheClassification .................................................... 236 8.12 Exercises.............................................................. 238 9 RepresentationsofSemisimpleLieAlgebras............................ 241 9.1 WeightsofRepresentations.......................................... 241 9.2 IntroductiontoVermaModules...................................... 244 9.3 UniversalEnvelopingAlgebras...................................... 246 9.4 ProofofthePBWTheorem.......................................... 250 9.5 ConstructionofVermaModules..................................... 254 9.6 IrreducibleQuotientModules ....................................... 257 9.7 Finite-DimensionalQuotientModules.............................. 260 9.8 Exercises.............................................................. 263 10 FurtherPropertiesoftheRepresentations............................... 265 10.1 TheStructureoftheWeights ........................................ 265 10.2 TheCasimirElement................................................. 269 10.3 CompleteReducibility............................................... 273 10.4 TheWeylCharacterFormula........................................ 275 10.5 TheWeylDimensionFormula....................................... 281 10.6 TheKostantMultiplicityFormula................................... 287 10.7 TheCharacterFormulaforVermaModules ........................ 294 10.8 ProofoftheCharacterFormula...................................... 295 10.9 Exercises.............................................................. 303 PartIII CompactLieGroups 11 CompactLieGroupsandMaximalTori................................. 307 11.1 Tori.................................................................... 308 11.2 MaximalToriandtheWeylGroup.................................. 312 11.3 MappingDegrees..................................................... 315 11.4 QuotientManifolds................................................... 321 11.5 ProofoftheTorusTheorem ......................................... 326 11.6 TheWeylIntegralFormula .......................................... 330 11.7 RootsandtheStructureoftheWeylGroup......................... 333 11.8 Exercises.............................................................. 339 12 TheCompactGroupApproachtoRepresentationTheory............ 343 12.1 Representations....................................................... 343 12.2 AnalyticallyIntegralElements ...................................... 346 12.3 OrthonormalityandCompletenessforCharacters.................. 351

Description:
This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for pro
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.