Graduate Texts in Mathematics Brian Hall Lie Groups, Lie Algebras, and Representations An Elementary Introduction Second Edition Graduate Texts in Mathematics 222 Graduate Texts in Mathematics SeriesEditors: SheldonAxler SanFranciscoStateUniversity,SanFrancisco,CA,USA KennethRibet UniversityofCalifornia,Berkeley,CA,USA AdvisoryBoard: AlejandroAdem,UniversityofBritishColumbia DavidJerison,UniversityofCaliforniaBerkeley&MSRI IreneM.Gamba,TheUniversityofTexasatAustin JeffreyC.Lagarias,UniversityofMichigan KenOno,EmoryUniversity JeremyQuastel,UniversityofToronto FadilSantosa,UniversityofMinnesota BarrySimon,CaliforniaInstituteofTechnology Graduate Texts in Mathematics bridge the gap between passive study and creative understanding, offering graduate-level introductions to advanced topics in mathematics. The volumes are carefully written as teaching aids and highlight characteristic features of the theory. Although these books are frequently used as textbooksingraduatecourses,theyarealsosuitableforindividualstudy. Moreinformationaboutthisseriesathttp://www.springer.com/series/136 Brian Hall Lie Groups, Lie Algebras, and Representations An Elementary Introduction Second Edition 123 BrianHall DepartmentofMathematics UniversityofNotreDame NotreDame,IN,USA ISSN0072-5285 ISSN2197-5612 (electronic) GraduateTextsinMathematics ISBN978-3-319-13466-6 ISBN978-3-319-13467-3 (eBook) DOI10.1007/978-3-319-13467-3 LibraryofCongressControlNumber:2015935277 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2003,2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternational PublishingAGSwitzerlandispartofSpringerScience+Business Media(www. springer.com) ForCarla Contents PartI GeneralTheory 1 MatrixLieGroups.......................................................... 3 1.1 Definitions............................................................ 3 1.2 Examples ............................................................. 5 1.3 TopologicalProperties ............................................... 16 1.4 Homomorphisms..................................................... 21 1.5 LieGroups............................................................ 25 1.6 Exercises.............................................................. 26 2 TheMatrixExponential ................................................... 31 2.1 TheExponentialofaMatrix......................................... 31 2.2 ComputingtheExponential.......................................... 34 2.3 TheMatrixLogarithm ............................................... 36 2.4 FurtherPropertiesoftheExponential............................... 40 2.5 ThePolarDecomposition............................................ 42 2.6 Exercises.............................................................. 46 3 LieAlgebras................................................................. 49 3.1 DefinitionsandFirstExamples...................................... 49 3.2 Simple,Solvable,andNilpotentLieAlgebras...................... 53 3.3 TheLieAlgebraofaMatrixLieGroup............................. 55 3.4 Examples ............................................................. 57 3.5 LieGroupandLieAlgebraHomomorphisms...................... 60 3.6 TheComplexificationofaRealLieAlgebra ....................... 65 3.7 TheExponentialMap ................................................ 67 3.8 ConsequencesofTheorem3.42 ..................................... 70 3.9 Exercises.............................................................. 73 4 BasicRepresentationTheory.............................................. 77 4.1 Representations....................................................... 77 4.2 ExamplesofRepresentations........................................ 81 4.3 NewRepresentationsfromOld...................................... 84 vii viii Contents 4.4 CompleteReducibility............................................... 90 4.5 Schur’sLemma....................................................... 94 4.6 Representationsofsl.2IC/ .......................................... 96 4.7 GroupVersusLieAlgebraRepresentations......................... 101 4.8 ANonmatrixLieGroup.............................................. 103 4.9 Exercises.............................................................. 105 5 TheBaker–Campbell–HausdorffFormulaandItsConsequences.... 109 5.1 The“Hard”Questions................................................ 109 5.2 AnIllustrativeExample.............................................. 110 5.3 TheBaker–Campbell–HausdorffFormula.......................... 113 5.4 TheDerivativeoftheExponentialMap............................. 114 5.5 ProofoftheBCHFormula........................................... 117 5.6 TheSeriesFormoftheBCHFormula .............................. 118 5.7 GroupVersusLieAlgebraHomomorphisms....................... 119 5.8 UniversalCovers ..................................................... 126 5.9 SubgroupsandSubalgebras.......................................... 128 5.10 Lie’sThirdTheorem ................................................. 135 5.11 Exercises.............................................................. 135 PartII SemisimpleLieAlgebras 6 TheRepresentationsofsl.3IC/........................................... 141 6.1 Preliminaries.......................................................... 141 6.2 WeightsandRoots ................................................... 142 6.3 TheTheoremoftheHighestWeight ................................ 146 6.4 ProofoftheTheorem ................................................ 148 6.5 AnExample:HighestWeight.1;1/................................. 153 6.6 TheWeylGroup...................................................... 154 6.7 WeightDiagrams..................................................... 158 6.8 FurtherPropertiesoftheRepresentations........................... 159 6.9 Exercises.............................................................. 165 7 SemisimpleLieAlgebras................................................... 169 7.1 SemisimpleandReductiveLieAlgebras............................ 169 7.2 CartanSubalgebras................................................... 174 7.3 RootsandRootSpaces............................................... 176 7.4 TheWeylGroup...................................................... 182 7.5 RootSystems......................................................... 183 7.6 SimpleLieAlgebras ................................................. 185 7.7 TheRootSystemsoftheClassicalLieAlgebras................... 188 7.8 Exercises.............................................................. 193 8 RootSystems................................................................ 197 8.1 AbstractRootSystems............................................... 197 8.2 ExamplesinRankTwo............................................... 201 8.3 Duality................................................................ 204 Contents ix 8.4 BasesandWeylChambers........................................... 206 8.5 WeylChambersandtheWeylGroup................................ 212 8.6 DynkinDiagrams..................................................... 216 8.7 IntegralandDominantIntegralElements........................... 218 8.8 ThePartialOrdering ................................................. 221 8.9 ExamplesinRankThree............................................. 228 8.10 TheClassicalRootSystems ......................................... 232 8.11 TheClassification .................................................... 236 8.12 Exercises.............................................................. 238 9 RepresentationsofSemisimpleLieAlgebras............................ 241 9.1 WeightsofRepresentations.......................................... 241 9.2 IntroductiontoVermaModules...................................... 244 9.3 UniversalEnvelopingAlgebras...................................... 246 9.4 ProofofthePBWTheorem.......................................... 250 9.5 ConstructionofVermaModules..................................... 254 9.6 IrreducibleQuotientModules ....................................... 257 9.7 Finite-DimensionalQuotientModules.............................. 260 9.8 Exercises.............................................................. 263 10 FurtherPropertiesoftheRepresentations............................... 265 10.1 TheStructureoftheWeights ........................................ 265 10.2 TheCasimirElement................................................. 269 10.3 CompleteReducibility............................................... 273 10.4 TheWeylCharacterFormula........................................ 275 10.5 TheWeylDimensionFormula....................................... 281 10.6 TheKostantMultiplicityFormula................................... 287 10.7 TheCharacterFormulaforVermaModules ........................ 294 10.8 ProofoftheCharacterFormula...................................... 295 10.9 Exercises.............................................................. 303 PartIII CompactLieGroups 11 CompactLieGroupsandMaximalTori................................. 307 11.1 Tori.................................................................... 308 11.2 MaximalToriandtheWeylGroup.................................. 312 11.3 MappingDegrees..................................................... 315 11.4 QuotientManifolds................................................... 321 11.5 ProofoftheTorusTheorem ......................................... 326 11.6 TheWeylIntegralFormula .......................................... 330 11.7 RootsandtheStructureoftheWeylGroup......................... 333 11.8 Exercises.............................................................. 339 12 TheCompactGroupApproachtoRepresentationTheory............ 343 12.1 Representations....................................................... 343 12.2 AnalyticallyIntegralElements ...................................... 346 12.3 OrthonormalityandCompletenessforCharacters.................. 351
Description: