ebook img

Lie Groups and Lie Algebras: Chapters 4-6 PDF

314 Pages·2002·16.33 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lie Groups and Lie Algebras: Chapters 4-6

ELEMENTS OF MATHEMATICS Lie Groups and lbie Algebras Chapters 4-6 Springer ELEMENTS OF MATHEMATICS Springer Berlin Heidelberg New York Barcelona Hong Kong London Milan Paris Tokyo NICOLAS BOURBAKI ELEMENTS OF MATHEMATICS Lie Groups and Lie Algebras Chapters 4-6 ' Springer Originally published as GROUPES ET ALGEBRES DE LIE Hermann, Paris, i968 Translator Andrew Pressley Department of Mathematics King's College London Strand, London WC2R 2LS United Kingdom e-mail: [email protected] Mathematics Subject Classification (2000 ): 22E10;22E15;22E60;22-02 Cataloging-in-Publication data applied for Die Deutsche Bibliothek · CIP-Einheitsaufnahme Bourbaki, Nicolas: Elements of mathematics IN. Bourbaki. -Berlin; Heidelberg; New York; London; Paris; Tokyo; Hong Kong: Springer Einheitssacht.: £1ements de mathematique <engl.> Lie groups and Lie algebras Chapters 4/6. -2002 ISBN 3-540-42650-7 ISBN 3-540-42650-7 Springer-Verlag Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. Springer· Verlag Berlin Heidelberg New York a member of BertelsmannSpringer Science+Business Media GmbH http://www.springcr.de ©Springer-Verlag Berlin Heidelberg 2002 Printed in Germany SPIN: 10659982 41/3142 db 5 4 3 2 1 o INTRODl.JCTION TO CHAPTERS IV, V AND VI The study of semi-simple (analytic or algebraic) groups and their Lie algebras leads to the consideration of root systems, Co:r:eter groups and Tits systems. Chapters IV, V and VI are devoted to these structures. To orient the reader, we give several examples below. I. Let g be a complex semi-simple Lie algebra and IJ a Cartan subalgebra of g1. A root of g with respect to 1J is a non-zero linear form a on 1J such that there exists a non-zero element x of g with [h, x] = a(h)x for all h E IJ. These roots form a reduced root system R in the vector space IJ* dual to IJ. Giving R determines g up to isomorphism and every reduced root system is isomorphic to a root system obtained in this way. An automorphism of g leaving IJ stable defines an automorphism of IJ* leaving R invariant, and every automorphism of R is obtained in this way. The Wey! group of R consists of all the automorphisms of IJ" defined by the inner automorphisms of g leaving 1J stable; this is a Coxeter group. Let G be a connected complex Lie group with Lie algebra g, and let I' be the subgroup of G consisting of the elements h such that expc(27rih) = 1. Let K be the root system in IJ inverse to R, let Q(K) be the subgroup of IJ generated by R- and let P(K) be the subgroup associated to the subgroup Q(R) of I)* generated by R (i.e. the set of h. E IJ such that >..(h) is an integer for all ).. E Q(R)). Then P(K) ~ I' ~ Q(R-). Moreover, the centre of G is canonically isomorphic to P(K)/I ' and the fundamental group of G to I'/Q(K). In particular, I' is equal to P(K) if G is the adjoint group and I' is equal to Q(K) if G is simply-connected. Finally, the weights of the finite dimensional linear representations of G are the elements of the subgroup of r. IJ* associated to II. Let G be a semi-simple connected compact real Lie group, and let g be its Lie algebra. Let T be a maximal torus of G, with Lie algebra t, and let X be the group of characters of T. Let R be the set of non-zero elements a of X such that there exists a non-zero element .r of g with (Ad t).x = o(t)x for all t E T. Identify X with a lattice in the real vector space V = X @z R; then R is a reduced root system in V. Let N be the normaliser of T in G; the ac~ion 1 In this Introduction, we use freely the traditional terminology as well as the notions defined in Chapters IV, V and VI. VI TO CHAPTERS IV, V AND Vl of Non T defines an isomorphism from the group N/T to the Weyl group of R. We have P(R) ::> X ::> Q(R); moreover, X = P(R) if G is simply-connected and X = Q(R) if the centre of G reduces to the identity element. The complexified Lie algebra 9(C) of g is semi-simple and t(c) is a Cartan subalgebra of it. There exists a canonical isomorphism from V(c) to the dual of t(c) that transforms R into the root system of 9(C) with respect to t(c). III. Let G be a connected semi-simple algebraic group over a commutative field k. Let T be a maximal element of the set of tori of G split over k and let X be the group of characters of T (the homomorphisms from T to the multiplicative group). We identify X with a lattice in the real vector space V = X ®z R. The roots of G with respect to T are the non-zero elements a of X such that there exists a non-zero element x of the Lie algebra g of G with (Ad t).x = a(t)x for all t E T. This gives a root system R in V, which is not necessarily reduced. Let N be the normaliser and Z the centraliser of T in G and let N(k) and Z(k) be their groups of rational points over k. The action of N(k) on T defines an isomorphism from N(k)/Z(k) to the Wey! group of R. Let U be a maximal element of the set of unipotent subgroups of G, de = fined over k and normalised by Z. Put P = Z.U. Then P(k) Z(k).U(k) and P(k) n N(k) = Z(k). Moreover, there exists a basis (a1, ... , O'.n) of R such that the weights of T in U are the positive roots of R for this basis; if S de notes the set of elements of N(k)/Z(k) that correspond, via the isomorphism defined above, to the symmetries s0 , E W(R) associated to the roots ai, the quadruple (G(k), P(k), N(k), S) is a Tits system. IV. In the theory of semi-simple algebraic groups over a local field, Tits systems are encountered whose Wey! group is the affine Wey! group of a. root system. For example, let G = SL(n + 1, Qp) (with n 2: 1). Let B be the group of matrices (aij) E SL(n + 1, Zp) such that a;,; E pZP for i < j, and let N be the subgroup of G consisting of the matric~s having only one non-zero element in each row and column. Then there exists a subset S of N/(BnN) such that the quadruple (G,B,N,S) is a Tits system. The group W = N/(B n N) is the affine Wey! group of a root system of type An; this is an infinite Coxeter group. Numerous conversations with J. Tits have been of invaluable assistance to ·ns in the preparation of these chapters. We thank him ver·y cordially. CONTENTS INTRODUCTION TO CHAPTERS IV, V AND VI . . . . . . . . V CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII CHAPTER IV COXETER GROUPS AND TITS SYSTEMS § 1. Coxeter Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 I. Length and reduced decompositions . . . . . . . . . . . . . . . . . . . . . 1 2. Dihedral groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3. First properties of Coxeter groups . . . . . . . . . . . . . . . . . . . . . . 4 4. Reduced decompositions in a Coxeter group . . . . . . . . . . . . . . 5 5. The exchange condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6. Characterisation of Coxcter groups . . . . . . . . . . . . . . . . . . . . . . 10 7. Families of partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 8. Subgroups of Coxeter groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 9. Coxeter matrices and Coxeter graphs . . . . . . . . . . . . . . . . . . . . 13 § 2. Tits Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1. Definitions and first properties . . . . . . . . . . . . . . . . . . . . . . . . . 15 2. An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3. Decomposition of G into double cosets . . . . . . . . . . . . . . . . . . 18 4. Relations with Coxeter systems . . . . . . . . . . . . . . . . . . . . . . . . . 19 5. Subgroups of G containing B . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6. Parabolic subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7. The simplicity theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Appendix. Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 L Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2. The connected components of a graph . . . . . . . . . . . . . . . . . . . 27 3. Forests and trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Exercises for § 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Exercises for § 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 VIII CONTENTS CHAPTER V GROUPS GENERATED BY REFLECTIONS § 1. Hyperplanes, chambers and facets . . . . . . . . . . . . . . . . . . . . . . 61 1. Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2. Facets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3. Chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4. Walls and faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5. Intersecting hyperplanes ................... _· . . . . . . . . . . . 67 6. Simplicial cones and simplices . . . . . . . . . . . . . . . . . . . . . . . . . . 68 § 2. Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 1. Pseudo-reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 2. Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3. Orthogonal reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4. Orthogonal reflections in a euclidean affine space . . . . . . . . . 73 5. Complements on plane rotations . . . . . . . . . . . . . . . . . . . . . . . . 74 § 3. Groups of displacements generated by reflections . . . . . . . 76 1. Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 2. Relation with Coxeter systems . . . . . . . . . . . . . . . . . . . . . . . . . 78 3. Fundamental domain, stabilisers . . . . . . . . . . . . . . . . . . . . . . . . 79 4. Coxeter matrix and Coxeter graph of HI . . . . . . . . . . . . . . . . . 81 5. Systems of vectors with negative scalar products . . . . . . . . . . 82 6. Finiteness theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7. Decomposition of the linear representation of W on T . . . . 86 8. Product decomposition of the affine space E . . . . . . . . . . . . . . 88 9. The structure of chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 10. Special points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 § 4. The geometric representation of a Coxeter group . . . . . . . 94 1. The form associated to a Coxeter group . . . . . . . . . . . . 94 2. The plane Es,s' and the group generated by (J3 and (J's' 95 3. The group and representation associated to a Coxeter matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4. The contragredient representation . . . . . . . . . . . . . . . . . . . . . . 97 5. Proof of lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6. The fundamental domain of W in the union of the chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7. Irreducibility of the geometric representation of a Coxeter group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 8. Finiteness criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 9. The case in which BM is positive and degenerate . . . . . . . 105 CONTENTS IX § 5. Invariants in the symmetric algebra .................... . 108 1. Poincare series of graded algebras ...................... . 108 2. Invariants of a finite linear group: modular properties 110 3. Invariants of a finite linear group: ring-theoretic properties . 112 4. Anti-invariant elements ............................... . 117 5. Complements 119 § 6. The Coxeter transformation ........................... . 121 1. Definition of Coxeter transformations .................. . 121 2. Eigenvalues of a Coxeter transformation: exponents . . . . . . . 122 Appendix: Complements on linear representations . . . . . . . . . . 129 Exercises for § 2. 133 Exercises for § 3. 134 Exercises for § 4. 137 Exercises for § 5. 144 Exercises for § 6. 150 CHAPTER VI ROOT SYSTEMS § 1. Root systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 1. Definition of a root system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 2. Direct sum of root systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 3. Relation between two roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 4. Reduced root systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 5. Chambers and bases of root systems . . . . . . . . . . . . . . . . . . . . 166 6. Positive roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7. Closed sets of roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 8. Highest root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 9. Weights, radical weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 10. Fundamental weights, dominant. weights . . . . . . . . . . . . . . . . . 180 11. Coxeter transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 12. Canonical bilinear form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 § 2. Affine Weyl group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 1. Affine Wey! group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 2. Weights and special weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 3. The normaliser of \Va . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 4. Application: order of the Weyl group . . . . . . . . . . . . . . . . . . . . 190 5. Root systems and groups generated by reflections . . . . . . . . . 191

Description:
The purpose of the Elements of Mathematics by Nicolas Bourbaki is to provide a formal, systematic presentation of mathematics from their beginning. This volume contains chapters 4 to 6 of the book on Lie Groups and Lie Algebras. It is devoted to root systems, Coxeter groups and Tits systems, which o
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.