ebook img

Lie Algebras and Algebraic Groups.pdf - Index of PDF

649 Pages·2005·5.52 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lie Algebras and Algebraic Groups.pdf - Index of

Springer Monographs in Mathematics Patrice Tauvel Rupert W.T. Yu Lie Algebras and Algebraic Groups With44Figures 123 PatriceTauvel RupertW.T.Yu DépartementdeMathématiques UniversitédePoitiers BoulevardMarieetPierreCurie, Téléport2–BP30179 86962FuturoscopeChasseneuilcedex,France e-mail:[email protected] [email protected] LibraryofCongressControlNumber:2005922400 MathematicsSubjectClassification(2000):17-01,17-02,17Bxx,20Gxx ISSN1439-7382 ISBN-10 3-540-24170-1 SpringerBerlinHeidelbergNewYork ISBN-13 978-3-540-24170-6 SpringerBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialisconcerned,specifically therightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproductiononmicrofilmorinany otherway,andstorageindatabanks.Duplicationofthispublicationorpartsthereofispermittedonlyunderthe provisionsoftheGermanCopyrightLawofSeptember9,1965,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.ViolationsareliableforprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springeronline.com ©Springer-VerlagBerlinHeidelberg2005 PrintedinGermany Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply,evenin theabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsand thereforefreeforgeneraluse. Typesetting:bytheauthorsandTechBooksusingaSpringerLATEXmacropackage Coverdesign:ErichKirchner,Heidelberg Printedonacid-freepaper 41/sz-543210 Preface The theory of groups and Lie algebras is interesting for many reasons. In the mathematical viewpoint, it employs at the same time algebra, analysis and geometry. On the other hand, it intervenes in other areas of science, in particularindifferentbranchesofphysicsandchemistry.Itisanactivedomain of current research. Oneofthedifficultiesthatgraduatestudentsormathematiciansinterested inthetheorycomeacross,isthefactthatthetheoryhasverymuchadvanced, andconsequently,theyneedtoreadavastamountofbooksandarticlesbefore they could tackle interesting problems. One of the goals we wish to achieve with this book is to assemble in a single volume the basis of the algebraic aspects of the theory of groups and Lie algebras. More precisely, we have presented the foundation of the study of finite-dimensional Lie algebras over an algebraically closed field of characteristic zero. Here,thegeometricalaspectisfundamental,andconsequently,weneedto use the notion of algebraic groups. One of the main differences between this book and many other books on the subject is that we give complete proofs for the relationships between algebraic groups and Lie algebras, instead of admitting them. We have also given the proofs of certain results on commutative alge- bra and algebraic geometry that we needed so as to make this book as self- contained as possible. We believe that in this way, the book can be useful for both graduate students and mathematicians working in this area. Let us give a brief description of the material treated in this book. As we have stated earlier, our goal is to study Lie algebras over an alge- braicallyclosedfieldofcharacteristiczero.Thisallowsustoavoid,inconsider- ingquestionsconcerningalgebraicgeometry,thenotionofseparability,which simplifies considerably our presentation. In fact, under certain conditions of separability, the correspondence between Lie algebras and algebraic groups described in chapter 24 has a very nice generalization when the algebraically closed base field has prime characteristic. VI Preface Chapters 1 to 9 treat basic results on topology, commutative algebra and sheaves of functions that are required in the rest of the book. In chapter 10, we recall some standard results on Jordan decompositions and the theory of abstract groups and group actions. Here, the base field is assumedtobealgebraicallyclosedinordertoobtainaJordandecomposition. Chapters11to17giveanintroductiontothetheoryofalgebraicgeometry which we shall encounter continually in the chapters which follow. We have selected only the notions that we require in this book. The reader should by no means consider these chapters as a thorough introduction to the theory of algebraic geometry. Chapters 18 and 36 are dedicated to root systems which are fundamental to the study of semisimple Lie algebras. We introduce Lie algebras in chapter 19. In this chapter, we prove impor- tant results on the structure of Lie algebras such as Engel’s theorem, Lie’s theorem and Cartan’s criterion on solvability. In chapter 20, we define the notions of semisimple and reductive Lie al- gebras. In addition to characterizing these Lie algebras, we discover in this chapter how the structure of semisimple Lie algebras can be related to root systems. Thegeneraltheoryofalgebraicgroupsisstudiedinchapters21to28.The relations between Lie algebras and algebraic groups, which are fundamental to us, are established in chapters 23 and 24. Chapter 29 presents applications of these relations to tackle the systematic study of Lie algebras. The reader willobservethatthegeometricalaspectshaveanimportantpartinthisstudy. Inparticular,theorbitsofpointsundertheactionofanalgebraicgroupplays a central role. Chapter 30 gives a short introduction of the theory of representations of semisimple Lie algebras which we need in order to prove Chevalley’s theorem on invariants in chapter 31. We define in chapter 32 S-triples which are essential to the study of semi- simple Lie algebras. Another fundamental notion, treated in chapters 33 to 35, is the notion of nilpotent orbits in semisimple Lie algebras. We introduce symmetric Lie algebras in chapter 37, and semisimple sym- metric Lie algebras in chapter 38. In these chapters, we give generalizations of certain results of chapters 32 to 35. In addition to presenting the essential classical results of the theory, some of the results we have included in the final chapters are recent, and some are yet to be published. Attheendofeachchapter,thereadermayfindalistofrelevantreferences, and in some cases, remarks concerning the contents of the chapter. There are many approaches to reading this book. We need not read this book linearly. A reader familiar with the theory of commutative algebra may skip chapters 2 to 8, and consider these chapters for references only. Let us also point out that chapters 18, 19 and 20 constitute a short introduction to Preface VII the theory of finite-dimensional Lie algebras and the structure of semisimple Lie algebras. WewishtothankourcolleaguesA.BouazizandH.Sabourinoftheuniver- sity of Poitiers with whom we had many useful discussion during the prepa- ration of this book. Poitiers, Patrice Tauvel January 2005 Rupert W.T. Yu Contents 1 Results on topological spaces .............................. 1 1.1 Irreducible sets and spaces ............................... 1 1.2 Dimension ............................................. 4 1.3 Noetherian spaces....................................... 5 1.4 Constructible sets....................................... 6 1.5 Gluing topological spaces ................................ 8 2 Rings and modules ........................................ 11 2.1 Ideals ................................................. 11 2.2 Prime and maximal ideals................................ 12 2.3 Rings of fractions and localization......................... 13 2.4 Localizations of modules................................. 17 2.5 Radical of an ideal ...................................... 18 2.6 Local rings............................................. 19 2.7 Noetherian rings and modules ............................ 21 2.8 Derivations ............................................ 24 2.9 Module of differentials................................... 25 3 Integral extensions ........................................ 31 3.1 Integral dependence ..................................... 31 3.2 Integrally closed domains ................................ 33 3.3 Extensions of prime ideals ............................... 35 4 Factorial rings ............................................. 39 4.1 Generalities ............................................ 39 4.2 Unique factorization..................................... 41 4.3 Principal ideal domains and Euclidean domains............. 43 4.4 Polynomials and factorial rings ........................... 45 4.5 Symmetric polynomials .................................. 48 4.6 Resultant and discriminant............................... 50 X Contents 5 Field extensions ........................................... 55 5.1 Extensions ............................................. 55 5.2 Algebraic and transcendental elements..................... 56 5.3 Algebraic extensions .................................... 56 5.4 Transcendence basis..................................... 58 5.5 Norm and trace......................................... 60 5.6 Theorem of the primitive element ......................... 62 5.7 Going Down Theorem ................................... 64 5.8 Fields and derivations ................................... 67 5.9 Conductor ............................................. 70 6 Finitely generated algebras ................................ 75 6.1 Dimension ............................................. 75 6.2 Noether’s Normalization Theorem......................... 76 6.3 Krull’s Principal Ideal Theorem........................... 81 6.4 Maximal ideals ......................................... 82 6.5 Zariski topology ........................................ 84 7 Gradings and filtrations ................................... 87 7.1 Graded rings and graded modules......................... 87 7.2 Graded submodules ..................................... 88 7.3 Applications ........................................... 90 7.4 Filtrations ............................................. 91 7.5 Grading associated to a filtration ......................... 92 8 Inductive limits............................................ 95 8.1 Generalities ............................................ 95 8.2 Inductive systems of maps ............................... 96 8.3 Inductive systems of magmas, groups and rings ............. 98 8.4 An example ............................................100 8.5 Inductive systems of algebras.............................100 9 Sheaves of functions .......................................103 9.1 Sheaves................................................103 9.2 Morphisms.............................................104 9.3 Sheaf associated to a presheaf ............................106 9.4 Gluing ................................................109 9.5 Ringed space ...........................................110 10 Jordan decomposition and some basic results on groups ...113 10.1 Jordan decomposition ...................................113 10.2 Generalities on groups...................................117 10.3 Commutators ..........................................118 10.4 Solvable groups.........................................120 10.5 Nilpotent groups........................................121 Contents XI 10.6 Group actions ..........................................122 10.7 Generalities on representations ...........................123 10.8 Examples ..............................................126 11 Algebraic sets .............................................131 11.1 Affine algebraic sets.....................................131 11.2 Zariski topology ........................................132 11.3 Regular functions .......................................133 11.4 Morphisms.............................................134 11.5 Examples of morphisms..................................136 11.6 Abstract algebraic sets ..................................138 11.7 Principal open subsets...................................140 11.8 Products of algebraic sets ................................142 12 Prevarieties and varieties ..................................147 12.1 Structure sheaf .........................................147 12.2 Algebraic prevarieties ...................................149 12.3 Morphisms of prevarieties................................151 12.4 Products of prevarieties..................................152 12.5 Algebraic varieties ......................................155 12.6 Gluing ................................................158 12.7 Rational functions ......................................159 12.8 Local rings of a variety ..................................162 13 Projective varieties ........................................167 13.1 Projective spaces .......................................167 13.2 Projective spaces and varieties............................168 13.3 Cones and projective varieties ............................171 13.4 Complete varieties ......................................176 13.5 Products...............................................178 13.6 Grassmannian variety ...................................180 14 Dimension.................................................183 14.1 Dimension of varieties ...................................183 14.2 Dimension and the number of equations ...................185 14.3 System of parameters ...................................187 14.4 Counterexamples .......................................190 15 Morphisms and dimension .................................191 15.1 Criterion of affineness ...................................191 15.2 Affine morphisms .......................................193 15.3 Finite morphisms .......................................194 15.4 Factorization and applications ............................197 15.5 Dimension of fibres of a morphism ........................199 15.6 An example ............................................203 XII Contents 16 Tangent spaces ............................................205 16.1 A first approach ........................................205 16.2 Zariski tangent space....................................207 16.3 Differential of a morphism ...............................209 16.4 Some lemmas ..........................................213 16.5 Smooth points..........................................215 17 Normal varieties...........................................219 17.1 Normal varieties ........................................219 17.2 Normalization ..........................................221 17.3 Products of normal varieties..............................223 17.4 Properties of normal varieties ............................225 18 Root systems ..............................................233 18.1 Reflections .............................................233 18.2 Root systems...........................................235 18.3 Root systems and bilinear forms ..........................238 18.4 Passage to the field of real numbers .......................239 18.5 Relations between two roots..............................240 18.6 Examples of root systems ................................243 18.7 Base of a root system ...................................244 18.8 Weyl chambers .........................................247 18.9 Highest root ...........................................250 18.10Closed subsets of roots ..................................250 18.11Weights ...............................................253 18.12Graphs ................................................255 18.13Dynkin diagrams .......................................256 18.14Classification of root systems.............................259 19 Lie algebras ...............................................277 19.1 Generalities on Lie algebras ..............................277 19.2 Representations.........................................279 19.3 Nilpotent Lie algebras ...................................282 19.4 Solvable Lie algebras ....................................286 19.5 Radical and the largest nilpotent ideal.....................289 19.6 Nilpotent radical........................................291 19.7 Regular linear forms.....................................292 19.8 Cartan subalgebras .....................................294 20 Semisimple and reductive Lie algebras.....................299 20.1 Semisimple Lie algebras .................................299 20.2 Examples ..............................................301 20.3 Semisimplicity of representations..........................302 20.4 Semisimple and nilpotent elements ........................305 20.5 Reductive Lie algebras...................................307

Description:
the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.