ebook img

Levy Processes, Integral Equations, Statistical Physics: Connections and Interactions PDF

246 Pages·2012·3.596 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Levy Processes, Integral Equations, Statistical Physics: Connections and Interactions

Operator Theory: Advances and Applications Volume 225 Founded in 1979 by Israel Gohberg Editors: Joseph A. Ball (Blacksburg, VA, USA) Harry Dym (Rehovot, Israel) Marinus A. Kaashoek (Amsterdam, The Netherlands) Heinz Langer (Vienna, Austria) Christiane Tretter (Bern, Switzerland) Associate Editors: Honorary and Advisory Editorial Board: Vadim Adamyan (Odessa, Ukraine) Lewis A. Coburn (Buffalo, NY, USA) Albrecht Böttcher (Chemnitz, Germany) Ciprian Foias (College Station, TX, USA) B. Malcolm Brown (Cardiff, UK) J.William Helton (San Diego, CA, USA) Raul Curto (Iowa, IA, USA) Thomas Kailath (Stanford, CA, USA) Fritz Gesztesy (Columbia, MO, USA) Peter Lancaster (Calgary, Canada) Pavel Kurasov (Lund, Sweden) Peter D. Lax (New York, NY, USA) Leonid E. Lerer (Haifa, Israel) Donald Sarason (Berkeley, CA, USA) Vern Paulsen (Houston, TX, USA) Bernd Silbermann (Chemnitz, Germany) Mihai Putinar (Santa Barbara, CA, USA) Harold Widom (Santa Cruz, CA, USA) Leiba Rodman (Williamsburg, VA, USA) Ilya M. Spitkovsky (Williamsburg, VA, USA) Subseries Linear Operators and Linear Systems Subseries editors: Daniel Alpay (Beer Sheva, Israel) Birgit Jacob (Wuppertal, Germany) André C.M. Ran (Amsterdam, The Netherlands) Subseries Advances in Partial Differential Equations Subseries editors: Bert-Wolfgang Schulze (Potsdam, Germany) Michael Demuth (Clausthal, Germany) Jerome A. Goldstein (Memphis, TN, USA) Nobuyuki Tose (Yokohama, Japan) Ingo Witt (Göttingen, Germany) Lev A. Sakhnovich Levy Processes, Integral Equations, Statistical Physics: Connections and Interactions Prof. Lev A. Sakhnovich 99 Cove Avenue Milford, Connecticut USA ISBN 978-3-0348-0355-7 ISBN 978-3-0348-0356-4 (eBook) DOI 10.1007/978-3-0348-0356-4 Springer Basel Heidelberg New York Dordrecht London Library of Congress Control Number: 2012941505 © Springer Basel 2012 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief experts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the the material contained herein. Printedonacid-freepaper Springer Basel AG is part of Springer Science+Business Media (www.birkhauser-science.com) To memory of my dear wife Olena Melnychenko Contents Introduction 1 1 Levy processes 11 1.1 Main notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2 Convolution type form of infinitesimal generator . . . . . . . . . . 13 1.3 Potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.4 Truncated generators and quasi-potentials . . . . . . . . . . . . . . 20 1.5 Probability of the Levy process remaining within the given domain 22 1.6 Non-negativity of the kernel Φ(x,y) . . . . . . . . . . . . . . . . . 25 1.7 Sectorial operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.8 Quasi-potential B, structure and properties . . . . . . . . . . . . . 30 1.9 Long time behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.10 Stable processes, main notions . . . . . . . . . . . . . . . . . . . . 39 1.11 Stable processes, quasi-potential . . . . . . . . . . . . . . . . . . . 40 1.12 On sample functions behavior of stable processes . . . . . . . . . . 42 1.13 Wiener process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 1.14 Iterated logarithm law, most visited sites and first hitting time . . 47 1.15 Two-sided estimation of the greatest eigenvalue of the operator B 51 α 2 The principle of imperceptibility of the boundary in the theory of stable processes 53 2.1 On a probabilistic inequality . . . . . . . . . . . . . . . . . . . . . 53 2.2 A weakened principle of imperceptibility of the boundary . . . . . 55 2.3 Cauchy process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.4 Wiener process, case α=2 . . . . . . . . . . . . . . . . . . . . . . 60 2.5 General case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3 Approximation of positive functions by linear positive polynomial operators 63 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.2 The asymptotic formula for C (ϕ,α) . . . . . . . . . . . . . . . . . 64 n 3.3 Precise value of C∗(α) . . . . . . . . . . . . . . . . . . . . . . . . . 73 vii viii Contents 3.4 Korovkin’s and Fejer’s operators . . . . . . . . . . . . . . . . . . . 74 4 Optimal prediction and matched filtering for generalized stationary processes 77 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2 Generalized stationary processes . . . . . . . . . . . . . . . . . . . 79 4.3 Generalized processes, examples . . . . . . . . . . . . . . . . . . . . 80 4.4 Problem of optimal prediction . . . . . . . . . . . . . . . . . . . . . 82 4.5 Generalized matched filters . . . . . . . . . . . . . . . . . . . . . . 83 5 Effective construction of a class of positive operators in Hilbert space, which do not admit triangular factorization 85 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.2 A special class of operators and corresponding differential systems 86 5.3 Non-factorable positive definite operators, a sufficient condition . . 90 5.4 A class of non-factorable positive definite operators . . . . . . . . . 92 5.5 Examples instead of existence theorems . . . . . . . . . . . . . . . 96 5.6 White noise type process, a special case . . . . . . . . . . . . . . . 97 6 Comparison of thermodynamic characteristics of quantum and classical approaches 101 6.1 Quasi-classical case . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.2 One-dimensional potential well . . . . . . . . . . . . . . . . . . . . 103 6.3 Harmonic oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.4 General case, statistical sum . . . . . . . . . . . . . . . . . . . . . 107 6.5 General case, mean energy . . . . . . . . . . . . . . . . . . . . . . . 111 6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 7 Dual canonical systems and dual matrix string equations 113 7.1 Canonical differential system . . . . . . . . . . . . . . . . . . . . . 116 7.2 On reduction of the canonical system to two dual differential systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.3 Spectral data and uniqueness theorems . . . . . . . . . . . . . . . . 127 7.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 7.5 On a mean value theorem in the class of Nevanlinna functions and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 7.6 Dual discrete canonical systems and dual orthogonal polynomials . 134 7.7 Classical discrete systems. Examples . . . . . . . . . . . . . . . . . 140 8 Integrable operators and canonical differential systems 151 8.1 Integrable operators and Riemann–Hilbert problem . . . . . . . . . 154 8.2 Limiting values of the multiplicative integral. . . . . . . . . . . . . 157 8.3 Spectral theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 8.4 Canonical differential systems . . . . . . . . . . . . . . . . . . . . . 161 Contents ix 8.5 Inverse problem, examples . . . . . . . . . . . . . . . . . . . . . . . 163 9 The game between energy and entropy 169 9.1 Connection between energy and entropy (quantum case) . . . . . . 169 9.2 Connection between energy and entropy (classical case) . . . . . . 171 9.3 Third law of thermodynamics . . . . . . . . . . . . . . . . . . . . . 173 9.4 Entropy and energy in non-extensive statistical mechanics . . . . . 174 9.5 Algorithmic entropy, thermodynamics, and game interpretation . . 177 10 Inhomogeneous Boltzmann equations: distance, asymptotics and comparison of the classical and quantum cases 181 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 10.2 Preliminaries: basic definitions and results . . . . . . . . . . . . . . 183 10.3 Extremal problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 10.4 Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 10.5 Modified Boltzmann equations for Fermi and Bose particles . . . . 189 10.6 Modified extremal problem . . . . . . . . . . . . . . . . . . . . . . 190 10.7 Lyapunov functional . . . . . . . . . . . . . . . . . . . . . . . . . . 196 10.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 11 Operator Bezoutiant and roots of entire functions, concrete examples 201 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 11.2 Main notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 11.3 Properties of the operator B . . . . . . . . . . . . . . . . . . . . . 205 11.4 The explicit form of the Bezoutiant . . . . . . . . . . . . . . . . . . 208 11.5 Classes of entire functions without common zeroes . . . . . . . . . 212 11.6 A generalization of the Schur–Cohn theorem, examples . . . . . . . 218 Comments 223 Bibliography 227 Glossary of important notations 241 Index 243

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.